cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331634 a(n) is the greatest possible least part of any prime partition of n.

This page as a plain text file.
%I A331634 #43 Jun 04 2021 04:42:05
%S A331634 2,3,2,5,3,7,3,3,5,11,5,13,7,5,5,17,7,19,7,7,11,23,11,7,13,7,11,29,13,
%T A331634 31,13,11,17,11,17,37,19,13,17,41,19,43,13,13,23,47,19,13,19,17,23,53,
%U A331634 23,17,19,19,29,59,29,61,31,17,23,19,29,67,31,23,29,71
%N A331634 a(n) is the greatest possible least part of any prime partition of n.
%H A331634 Alois P. Heinz, <a href="/A331634/b331634.txt">Table of n, a(n) for n = 2..12500</a>
%F A331634 For prime p>2, a(p) = a(2*p) = a(3*p) = p.
%e A331634 a(12) = 5, because 5 is the largest of all minimal primes in partitions of 12 into prime parts: [2,2,2,2,2,2], [2,2,2,3,3], [3,3,3,3], [2,2,3,5], [2,5,5], [2,3,7], [5,7].
%p A331634 b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q->
%p A331634       add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p))))
%p A331634     end:
%p A331634 a:= n-> degree(b(n, 2, x)):
%p A331634 seq(a(n), n=2..100);  # _Alois P. Heinz_, Mar 13 2020
%t A331634 Array[If[PrimeQ@ #, #, Max@ IntegerPartitions[#, #/FactorInteger[#][[1, 1]], Prime@ Range@ PrimePi[# - 2]][[All, -1]] ] &, 60, 2] (* _Michael De Vlieger_, Jan 26 2020 *)
%t A331634 (* Second program: *)
%t A331634 b[n_, p_, t_] := b[n, p, t] = If[n == 0, 1, If[p > n, 0, Function[q, Sum[
%t A331634      b[n - p*j, q, 1], {j, 1, n/p}]*t^p + b[n, q, t]][NextPrime[p]]]];
%t A331634 a[n_] := Exponent[b[n, 2, x], x];
%t A331634 a /@ Range[2, 100] (* _Jean-François Alcover_, Jun 04 2021, after _Alois P. Heinz_ *)
%Y A331634 Cf. A000040, A000607, A001414, A100484, A001748.
%K A331634 nonn
%O A331634 2,1
%A A331634 _David James Sycamore_, Jan 23 2020