This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331638 #18 Apr 04 2025 15:38:36 %S A331638 1,3,5,16,17,140,65,1395,2969,22176,1025,1050766,4097,13010328, %T A331638 128268897,637598438,65537,64864962683,262145,1676258452736, %U A331638 28683380484257,24908619669860,4194305,30567710172480050,8756434134071649,62128557507554504,21271147396968151093 %N A331638 Number of binary matrices with nonzero rows, a total of n ones and each column with the same number of ones and columns in nonincreasing lexicographic order. %C A331638 The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns. %C A331638 From _Gus Wiseman_, Apr 03 2025: (Start) %C A331638 Also the number of multiset partitions such that (1) the blocks together cover an initial interval of positive integers, (2) the blocks are sets of a common size, and (3) the block-sizes sum to n. For example, the a(1) = 1 through a(4) = 16 multiset partitions are: %C A331638 {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} %C A331638 {{1},{1}} {{1},{1},{1}} {{1,2},{1,2}} %C A331638 {{1},{2}} {{1},{1},{2}} {{1,2},{1,3}} %C A331638 {{1},{2},{2}} {{1,2},{2,3}} %C A331638 {{1},{2},{3}} {{1,2},{3,4}} %C A331638 {{1,3},{2,3}} %C A331638 {{1,3},{2,4}} %C A331638 {{1,4},{2,3}} %C A331638 {{1},{1},{1},{1}} %C A331638 {{1},{1},{1},{2}} %C A331638 {{1},{1},{2},{2}} %C A331638 {{1},{1},{2},{3}} %C A331638 {{1},{2},{2},{2}} %C A331638 {{1},{2},{2},{3}} %C A331638 {{1},{2},{3},{3}} %C A331638 {{1},{2},{3},{4}} %C A331638 (End) %H A331638 Andrew Howroyd, <a href="/A331638/b331638.txt">Table of n, a(n) for n = 1..200</a> %F A331638 a(n) = Sum_{d|n} A330942(n/d, d). %F A331638 a(p) = 2^(p-1) + 1 for prime p. %Y A331638 Cf. A330942, A331639. %Y A331638 For constant instead of strict blocks we have A034729. %Y A331638 Without equal sizes we have A116540 (normal set multipartitions). %Y A331638 Without strict blocks we have A317583. %Y A331638 For distinct instead of equal sizes we have A382428, non-strict blocks A326517. %Y A331638 For equal sums instead of sizes we have A382429, non-strict blocks A326518. %Y A331638 Normal multiset partitions: A255903, A255906, A317532, A382203, A382204, A382216. %Y A331638 Cf. A000110, A000670, A007716, A034691, A035310, A050320, A050326, A116539, A306319, A381718. %K A331638 nonn %O A331638 1,2 %A A331638 _Andrew Howroyd_, Jan 23 2020