A331665 Numbers k with a record number of divisors d < sqrt(k) such that d + k/d is prime.
1, 2, 6, 30, 210, 2310, 3570, 4830, 11550, 30030, 43890, 111930, 131670, 510510, 690690, 870870, 1021020, 2459730, 9699690, 13123110, 17160990, 40750710, 146006070, 223092870, 340510170, 358888530, 688677990, 1462190730, 2445553110, 2911018110, 6469693230
Offset: 1
Keywords
Examples
2 has one divisor below sqrt(2), 1, such that 1 + 2/1 = 3 is prime. 6 has 2 divisors below sqrt(6), 1 and 2, such that 1 + 6/1 = 7 and 2 + 6/2 = 5 are primes. 30 has 4 divisors below sqrt(30), 1, 2, 3, and 5 such that 1 + 30/1 = 31, 2 + 30/2 = 17, 3 + 30/3 = 13 and 5 + 30/5 = 11 are primes.
Programs
-
Mathematica
divCount[n_] := DivisorSum[n, Boole @ PrimeQ[# + n/#] &, #^2 < n &]; seq = {}; dm = -1; Do[d1 = divCount[n]; If[d1 > dm, dm = d1; AppendTo[seq, n]], {n, 1,10^6}]; seq
Comments