This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331666 #17 May 09 2024 02:58:12 %S A331666 1,672,30240,23569920,45532800,164989440,447828480,623397600, %T A331666 1381161600,1862023680,2144862720,3134799360,3831421440,13584130560, %U A331666 14182439040,16569653760,21943595520,22933532160,34482792960,35032757760,40752391680,53621568000,56481384960 %N A331666 Refactorable numbers (A033950) that are simultaneously arithmetic (A003601) and harmonic (A001599). %C A331666 Numbers m such that all values of sigma(m)/tau(m), m/tau(m) and m * tau(m)/sigma(m) are any integers (f, g, and h respectively). %C A331666 Corresponding values of numbers f, g and h: (1, 84, 1260, 294624, 474300, 1178496, 2946240, 3298400, 5754840, 11784960, ...); (1, 28, 315, 73656, 118575, 257796, 699732, 721525, 1198925, 2909412, 1675674, ...); (1, 8, 24, 80, 96, 140, 152, 189, 240, 158, 260, 266, 220, 380, 384, 296, 392, ...). %C A331666 Multiply-perfect numbers from this sequence are in A047728. %H A331666 Amiram Eldar, <a href="/A331666/b331666.txt">Table of n, a(n) for n = 1..118</a> (terms below 10^14) %e A331666 For m = 672, f = sigma(m)/tau(m) = 2016/24 = 84; g = m/tau(m) = 672/24 = 28; h = m * tau(m)/sigma(m) = 672*24/2016 = 8. %t A331666 Select[Range[3*10^7], Divisible[#, (d = DivisorSigma[0, #])] && Divisible[(s = DivisorSigma[1, #]), d] && Divisible[#*d, s] &] (* _Amiram Eldar_, Jan 24 2020 *) %o A331666 (Magma) [m: m in [1..10^6] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(m / NumberOfDivisors(m)) and IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m))] %o A331666 (PARI) is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(k % d) && !(s % d) && !((k * d) % s) ;} \\ _Amiram Eldar_, May 09 2024 %Y A331666 Intersection of A033950 and A007340. %Y A331666 Cf. A000005, A000203, A001599, A003601, A047728. %K A331666 nonn %O A331666 1,2 %A A331666 _Jaroslav Krizek_, Jan 23 2020