A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.
1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1
Examples
The a(1) = 1 through a(4) = 18 trees: (1) (2) (3) (4) (11) (12) (13) ((1)(1)) (111) (22) ((1)(2)) (112) ((1)(1)(1)) (1111) ((1)((1)(1))) ((1)(3)) ((2)(2)) ((2)(11)) ((11)(11)) ((1)(1)(2)) ((1)((1)(2))) ((2)((1)(1))) ((1)(1)(1)(1)) ((11)((1)(1))) ((1)((1)(1)(1))) ((1)(1)((1)(1))) (((1)(1))((1)(1))) ((1)((1)((1)(1))))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m]; Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]
Comments