This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331679 #15 Jan 30 2020 08:42:13 %S A331679 1,2,3,8,16,48,116,341,928,2753,7996,24254,73325,226471,702122 %N A331679 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are positive integers summing to n, with no two distinct leaves directly under the same vertex. %C A331679 A tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex. It is lone-child-avoiding if there are no unary branchings. %H A331679 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331679 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331679 The a(1) = 1 through a(5) = 16 trees: %e A331679 1 2 3 4 5 %e A331679 (11) (111) (22) (11111) %e A331679 (1(11)) (1111) ((11)3) %e A331679 (2(11)) (1(22)) %e A331679 (1(111)) (2(111)) %e A331679 (11(11)) (1(1111)) %e A331679 ((11)(11)) (11(111)) %e A331679 (1(1(11))) (111(11)) %e A331679 (1(2(11))) %e A331679 (2(1(11))) %e A331679 (1(1(111))) %e A331679 (1(11)(11)) %e A331679 (1(11(11))) %e A331679 (11(1(11))) %e A331679 (1((11)(11))) %e A331679 (1(1(1(11)))) %t A331679 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331679 usot[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[usot/@ptn]],disjointQ[DeleteCases[#,_?AtomQ]]&&SameQ@@Select[#,AtomQ]&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n]; %t A331679 Table[Length[usot[n]],{n,12}] %Y A331679 The non-locally disjoint version is A141268. %Y A331679 Locally disjoint trees counted by vertices are A316473. %Y A331679 The case where all leaves are 1's is A316697. %Y A331679 Number of trees counted by A331678 with all atoms equal to 1. %Y A331679 Matula-Goebel numbers of locally disjoint rooted trees are A316495. %Y A331679 Unlabeled lone-child-avoiding locally disjoint rooted trees are A331680. %Y A331679 Cf. A000081, A000669, A001678, A005804, A060356, A300660, A316471, A316694, A316696, A319312, A330465, A331681. %K A331679 nonn,more %O A331679 1,2 %A A331679 _Gus Wiseman_, Jan 25 2020