This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331680 #15 Feb 01 2020 07:08:24 %S A331680 1,0,1,1,2,3,6,9,16,26,45,72,124,201,341,561,947,1571,2651,4434,7496, %T A331680 12631,21423,36332,61910,105641,180924,310548,534713,923047 %N A331680 Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices. %C A331680 First differs from A320268 at a(11) = 45, A320268(11) = 44. %C A331680 A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex. Lone-child-avoiding means there are no unary branchings. %H A331680 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331680 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331680 The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot): %e A331680 o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) (oooooooo) %e A331680 (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) (o(oooooo)) %e A331680 (oo(oo)) (oo(ooo)) (oo(oooo)) (oo(ooooo)) %e A331680 (ooo(oo)) (ooo(ooo)) (ooo(oooo)) %e A331680 ((oo)(oo)) (oooo(oo)) (oooo(ooo)) %e A331680 (o(o(oo))) (o(o(ooo))) (ooooo(oo)) %e A331680 (o(oo)(oo)) ((ooo)(ooo)) %e A331680 (o(oo(oo))) (o(o(oooo))) %e A331680 (oo(o(oo))) (o(oo(ooo))) %e A331680 (o(ooo(oo))) %e A331680 (oo(o(ooo))) %e A331680 (oo(oo)(oo)) %e A331680 (oo(oo(oo))) %e A331680 (ooo(o(oo))) %e A331680 (o((oo)(oo))) %e A331680 (o(o(o(oo)))) %t A331680 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331680 strut[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]; %t A331680 Table[Length[strut[n]],{n,10}] %Y A331680 The enriched version is A316696. %Y A331680 The Matula-Goebel numbers of these trees are A331871. %Y A331680 The non-locally disjoint version is A001678. %Y A331680 These trees counted by number of leaves are A316697. %Y A331680 The semi-lone-child-avoiding version is A331872. %Y A331680 Cf. A000081, A000669, A005804, A060356, A141268, A300660, A316471, A316473, A316694, A316495, A319312, A330465, A331679, A331681, A331683. %K A331680 nonn,more %O A331680 1,5 %A A331680 _Gus Wiseman_, Jan 25 2020