cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331687 Number of locally disjoint enriched p-trees of weight n.

This page as a plain text file.
%I A331687 #5 Feb 01 2020 14:39:52
%S A331687 1,2,4,12,29,93,249,803,2337,7480,23130,77372,247598,834507,2762222
%N A331687 Number of locally disjoint enriched p-trees of weight n.
%C A331687 A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n.
%e A331687 The a(1) = 1 through a(4) = 12 enriched p-trees:
%e A331687   1  2     3        4
%e A331687      (11)  (21)     (22)
%e A331687            (111)    (31)
%e A331687            ((11)1)  (211)
%e A331687                     (1111)
%e A331687                     ((11)2)
%e A331687                     ((21)1)
%e A331687                     (2(11))
%e A331687                     ((11)11)
%e A331687                     ((111)1)
%e A331687                     (((11)1)1)
%e A331687                     ((11)(11))
%t A331687 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
%t A331687 ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
%t A331687 Table[Length[ldep[n]],{n,10}]
%Y A331687 The orderless version is A316696.
%Y A331687 The identity case is A331684.
%Y A331687 P-trees are A196545.
%Y A331687 Enriched p-trees are A289501.
%Y A331687 Locally disjoint identity trees are A316471.
%Y A331687 Enriched identity p-trees are A331875.
%Y A331687 Cf. A000669, A141268, A316473, A316495, A316694, A316697, A319312, A331678, A331679, A331680, A331686, A331871, A331874.
%K A331687 nonn,more
%O A331687 1,2
%A A331687 _Gus Wiseman_, Jan 31 2020