This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331687 #5 Feb 01 2020 14:39:52 %S A331687 1,2,4,12,29,93,249,803,2337,7480,23130,77372,247598,834507,2762222 %N A331687 Number of locally disjoint enriched p-trees of weight n. %C A331687 A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n. %e A331687 The a(1) = 1 through a(4) = 12 enriched p-trees: %e A331687 1 2 3 4 %e A331687 (11) (21) (22) %e A331687 (111) (31) %e A331687 ((11)1) (211) %e A331687 (1111) %e A331687 ((11)2) %e A331687 ((21)1) %e A331687 (2(11)) %e A331687 ((11)11) %e A331687 ((111)1) %e A331687 (((11)1)1) %e A331687 ((11)(11)) %t A331687 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331687 ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n]; %t A331687 Table[Length[ldep[n]],{n,10}] %Y A331687 The orderless version is A316696. %Y A331687 The identity case is A331684. %Y A331687 P-trees are A196545. %Y A331687 Enriched p-trees are A289501. %Y A331687 Locally disjoint identity trees are A316471. %Y A331687 Enriched identity p-trees are A331875. %Y A331687 Cf. A000669, A141268, A316473, A316495, A316694, A316697, A319312, A331678, A331679, A331680, A331686, A331871, A331874. %K A331687 nonn,more %O A331687 1,2 %A A331687 _Gus Wiseman_, Jan 31 2020