A331691 Resultant of the Shapiro polynomials P_n(x) and Q_n(x).
1, 2, -16, 2048, -67108864, 144115188075855872, -1329227995784915872903807060280344576, 226156424291633194186662080095093570025917938800079226639565593765455331328
Offset: 0
Links
- John Brillhart and L. Carlitz, Note on the Shapiro Polynomials, Proceedings of the American Mathematical Society, volume 25, number 1, May 1970, pages 114-118. Also at JSTOR. See A001782 for a scanned copy.
- Harold S. Shapiro, Extremal Problems for Polynomials and Power Series, Masters Thesis, Massachusetts Institute of Technology, 1951. See pages 40-41.
Programs
-
PARI
a(n) = if(n==0,1, -(-2)^(2^(n+1) - n - 2));
-
PARI
a(n) = my(P=1,Q=1); for(i=0,n-1, [P,Q]=[P+x^(2^i)*Q, P-x^(2^i)*Q]); polresultant(P,Q);
Formula
a(n) = (-1)^(n-1) * 2^(2^(n+1) - n - 2) for n >= 1 [Brillhart and Carlitz theorem 2].
a(n) = (-1)^(n-1) * A016031(n+2) for n >= 1.
a(n) = - 2^(2^n-1) * a(n-1) for n >= 2 [Brillhart and Carlitz in proof of theorem 2].
Comments