cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331695 Numerator of the x-coordinate of the 3rd point (x,y) of the n-th triangle with integer sides in the list given by A316841, when the triangle is drawn with the longest side from (0,0) to (0,A316843(n)) and the middle side A316844(n) from (0,A316843(n)) to (x,y). x = a(n)/A331696(n), y = sqrt(A331697(n))/A331696(n).

This page as a plain text file.
%I A331695 #7 Jan 25 2020 20:58:01
%S A331695 1,1,1,3,1,2,3,11,2,1,1,9,2,5,13,9,5,1,2,9,8,5,29,3,5,5,9,3,1,1,3,4,
%T A331695 25,3,7,33,20,7,17,11,29,19,7,1,2,9,8,25,18,7,55,4,37,11,53,4,19,3,31,
%U A331695 5,51,4,1,1,9,1,25,9,49,4,9,61,35,9,41,8,19,34
%N A331695 Numerator of the x-coordinate of the 3rd point (x,y) of the n-th triangle with integer sides in the list given by A316841, when the triangle is drawn with the longest side from (0,0) to (0,A316843(n)) and the middle side A316844(n) from (0,A316843(n)) to (x,y). x = a(n)/A331696(n), y = sqrt(A331697(n))/A331696(n).
%C A331695 The shortest side of the triangle has length A316845(n), i.e., x^2 + y^2 = A316845(n)^2.
%e A331695 x(n) = a(n)/A331696(n),
%e A331695 y(n) = sqrt(A331697(n))/A331696(n).
%e A331695    n i (A316843)
%e A331695    | | j (A316844)
%e A331695    | | | k (A316845)
%e A331695    | | | |  a(n) this sequence
%e A331695    | | | |  |  A331696
%e A331695    | | | |  |  |   A331697
%e A331695    | | | |  |  |   |  (x,y)
%e A331695    1 1 1 1  1  2   3  (0.5000,0.86603)
%e A331695    2 2 2 1  1  4  15  (0.2500,0.96825)
%e A331695    3 2 2 2  1  1   3  (1.0000,1.7321)
%e A331695    4 3 2 2  3  2   7  (1.5000,1.3229)
%e A331695    5 3 3 1  1  6  35  (0.16667,0.98601)
%e A331695    6 3 3 2  2  3  32  (0.66667,1.8856)
%e A331695    7 3 3 3  3  2  27  (1.5000,2.5981)
%e A331695    8 4 3 2 11  8 135  (1.3750,1.4524)
%e A331695    9 4 3 3  2  1   5  (2.0000,2.2361)
%e A331695   10 4 4 1  1  8  63  (0.12500,0.99216)
%e A331695   11 4 4 2  1  2  15  (0.50000,1.9365)
%e A331695   12 4 4 3  9  8 495  (1.1250,2.7811)
%e A331695   13 4 4 4  2  1  12  (2.0000,3.4641)
%e A331695   14 5 3 3  5  2  11  (2.5000,1.6583)
%e A331695   15 5 4 2 13 10 231  (1.3000,1.5199)
%e A331695   16 5 4 3  9  5 144  (1.8000,2.4000)
%Y A331695 Cf. A316841.
%Y A331695 Sides of triangle: A316843, A316844, A316845.
%Y A331695 Cf. A331696, A331697.
%K A331695 nonn,frac
%O A331695 1,4
%A A331695 _Hugo Pfoertner_, Jan 25 2020