This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331700 #16 May 03 2023 16:15:54 %S A331700 1,5,8,21,24,40,48,85,89,120,120,168,168,240,240,341,288,317,360,504, %T A331700 384,408,528,680,617,520,640,1008,840,816,960,1365,1072,1440,1248, %U A331700 1197,1368,1224,1360,2040,1680,1920,1848,1560,1864,2640,2208,2728,2385,3021 %N A331700 Binary XOR of squares of divisors of n. %H A331700 Rémy Sigrist, <a href="/A331700/b331700.txt">Table of n, a(n) for n = 1..8192</a> %H A331700 Rémy Sigrist, <a href="/A331700/a331700.png">Colored scatterplot of the first 2^18 terms</a> (where the color is function of A007814(n)) %e A331700 For n = 6: %e A331700 - the divisors of 6 are 1, 2, 3 and 6, %e A331700 - so a(6) = 1 XOR 4 XOR 9 XOR 36 = 40. %t A331700 Table[BitXor@@(Divisors[n]^2),{n,50}] (* _Harvey P. Dale_, May 03 2023 *) %o A331700 (PARI) a(n) = my (s=0); fordiv (n, d, s=bitxor(s, d^2)); s %o A331700 (Python) %o A331700 from functools import reduce %o A331700 from operator import xor %o A331700 from sympy import divisors %o A331700 def A331700(n): return reduce(xor,(d**2 for d in divisors(n,generator=True))) # _Chai Wah Wu_, Jul 01 2022 %Y A331700 Cf. A001157, A007814, A178910, A295901. %K A331700 nonn,base %O A331700 1,2 %A A331700 _Rémy Sigrist_, Jan 25 2020