This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331701 #13 Feb 03 2020 16:45:41 %S A331701 8,9,16,25,32,64,81,125,128,256,512,1024,2048,4096,5041,8192,16384, %T A331701 32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608, %U A331701 16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592 %N A331701 Prime powers (A025475) that can be represented as a sum of two prime powers. %C A331701 A000079 is a subsequence, starting from the 4th term, 2^3. %C A331701 The subsequence of odd terms begins: 9, 25, 81, 125, 5041. %e A331701 9 = 8 + 1. %e A331701 25 = 16 + 9. %e A331701 81 = 49 + 32. %e A331701 125 = 121 + 4. %e A331701 5041 = 71^2 = 4913 + 128 = 17^3 + 2^7. %t A331701 Select[#, Last@ # == 1 &][[All, 1]] &@ Fold[Function[{s, k}, Append[s, If[And[! PrimeQ@ k, DivisorSigma[1, k]*EulerPhi[k] > (k - 1)^2], {k, If[AnyTrue[IntegerPartitions[k, {2}], SubsetQ[s[[All, 1]], #] &], 1, 0]}, Nothing]]], {}, Range[10^4]] (* _Michael De Vlieger_, Jan 31 2020 *) %o A331701 (Python) %o A331701 from sympy import isprime %o A331701 TOP = 10**5 %o A331701 primePowers={} %o A331701 primePowers[1]=1 %o A331701 for x in range(2,TOP): %o A331701 if isprime(x): %o A331701 p = pp = x %o A331701 while pp < TOP**2: %o A331701 pp *= p %o A331701 primePowers[pp] = 1 %o A331701 a=[] %o A331701 pps = sorted(primePowers.keys())[:] %o A331701 for pp in pps: %o A331701 for p in pps: %o A331701 if p*2 > pp: break %o A331701 if (pp-p) in primePowers: %o A331701 print(pp) %o A331701 a.append(pp) %o A331701 break %o A331701 print(sorted(a)) %Y A331701 Cf. A025475, A000079. %K A331701 nonn %O A331701 1,1 %A A331701 _Alex Ratushnyak_, Jan 25 2020