cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331702 Number of distinct intersections among all circles that can be constructed on vertices of an n-sided regular polygon, using only a compass.

This page as a plain text file.
%I A331702 #53 Dec 15 2022 05:10:23
%S A331702 0,2,6,40,55,145,238,584,612,1350,1804,2401,3523,5180,6150,9312,11101,
%T A331702 13645,17746,22300,25998,33462,39514,43993,55225,66976,74088,88956,
%U A331702 102109,111841,133672,155808,170940,198798,220150,243937,275983,313728,338208,382480,419143,448561,507658
%N A331702 Number of distinct intersections among all circles that can be constructed on vertices of an n-sided regular polygon, using only a compass.
%C A331702 Sequence counts intersections among all distinct circles such that: A circle is defined by a pair of distinct points of a regular n-sided polygon. First point is the center of the circle, while the distance between the points defines the radius of the circle.
%C A331702 It seems one additional intersection exists at the center of the polygon if and only if n is a multiple of 6. From this and n symmetries of the n-sided regular polygon, it would follow that n divides either a(n) or a(n)-1, depending on whether n is a multiple of 6.
%C A331702 A093353(n-1) gives the number of unique circles whose intersections a(n) counts.
%C A331702 From _Scott R. Shannon_, Dec 15 2022 (Start)
%C A331702 The values for n which lead to all vertices, other than those defining the n-sided regular polygon, being simple start 2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, ... . These are all prime values except for the prime squares 4 and 25 which also appear. It is likely all primes appear although what other values lead to only simple vertices is unknown. (End)
%H A331702 Scott R. Shannon, <a href="/A331702/a331702.jpg">Image for n = 2</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_1.jpg">Image for n = 3</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_2.jpg">Image for n = 4</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_3.jpg">Image for n = 5</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_4.jpg">Image for n = 6</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_5.jpg">Image for n = 7</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_6.jpg">Image for n = 8</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_7.jpg">Image for n = 9</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_8.jpg">Image for n = 10</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_9.jpg">Image for n = 11</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_10.jpg">Image for n = 12</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_11.jpg">Image for n = 18</a>.
%H A331702 Scott R. Shannon, <a href="/A331702/a331702_12.jpg">Image for n = 25</a>.
%H A331702 N. J. A. Sloane, <a href="/A331702/a331702_2.pdf">Illustration for A331702(4) = 40</a>. Shows the planar graph. Annotated version of an illustration in the Math StackEchange link.
%H A331702 Math StackExchange, <a href="https://math.stackexchange.com/q/3518768">Intersections of circles drawn on vertices of regular polygons</a>, 2020.
%e A331702 a(1)=0, we need at least two points to define a radius and a center.
%e A331702 a(2)=2, 2 circles constructed on segment endpoints intersect at 2 points.
%e A331702 a(3)=6, 3 circles on vertices of a triangle intersect at 6 distinct points.
%e A331702 a(4)=40, 8 circles can be constructed on vertices of a square and intersect at 40 distinct points.
%e A331702 a(5)=55, 10 circles can be constructed on vertices of a pentagon and intersect at 55 distinct points.
%o A331702 (GeoGebra)
%o A331702 n = Slider(2, 10, 1);
%o A331702 C = Unique(RemoveUndefined(Flatten(Sequence(Sequence(Circle(Point({cos((2v Pi) / n), sin((2v Pi) / n)}), 2sin((c Pi) / n)), c, 1, floor(n / 2)), v, 1, n))));
%o A331702 I = Unique(RemoveUndefined(Flatten(Sequence(Sequence(Intersect(Element(C, i), Element(C, j)), j, 1, Length(C)), i, 1, Length(C)))));
%o A331702 a_n = Length(I);
%Y A331702 Cf. A093353, A359046 (regions), A359047 (edges), A359061 (k-gons), A358746.
%K A331702 nonn
%O A331702 1,2
%A A331702 _Matej Veselovac_, Jan 25 2020
%E A331702 a(24)-a(30) from _Giovanni Resta_, Mar 27 2020
%E A331702 a(31)-a(43) from _Scott R. Shannon_, Dec 14 2022