cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331734 a(n) = A033879(A225546(n)).

This page as a plain text file.
%I A331734 #16 Feb 15 2020 08:03:52
%S A331734 1,1,1,2,1,1,1,0,5,1,1,-4,1,1,1,4,1,-3,1,-28,1,1,1,-12,41,1,-19,-508,
%T A331734 1,1,1,2,1,1,1,14,1,1,1,-60,1,1,1,-131068,-115,1,1,-2,3281,-39,1,
%U A331734 -8589934588,1,-51,1,-1020,1,1,1,-124,1,1,-2035,6,1,1,1,-36893488147419103228,1,1,1,-12,1,1,-199,-680564733841876926926749214863536422908
%N A331734 a(n) = A033879(A225546(n)).
%H A331734 Antti Karttunen, <a href="/A331734/b331734.txt">Table of n, a(n) for n = 1..136</a>
%F A331734 a(n) = A033879(A225546(n)) = 2*A225546(n) - A331733(n).
%F A331734 For all n, a(A005117(n)) = 1. [It is not known if there are 1's in any other positions. See _Jianing Song_'s Oct 13 2019 comment in A033879.]
%F A331734 For a necessary condition that a(s) would be zero for any square, see A331741.
%o A331734 (PARI)
%o A331734 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A331734 A331734(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); (2*prod(i=1,u,prime(i)^A048675(prods[i]))) - prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));
%Y A331734 Cf. A005117, A033879, A225546, A331733, A331735, A331741.
%Y A331734 Cf. A323244, A323174, A324055, A324185, A324546 for other permutations of the deficiency, and also A324574, A324654.
%K A331734 sign
%O A331734 1,4
%A A331734 _Antti Karttunen_, Feb 02 2020