This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331752 #33 Jul 03 2021 07:17:42 %S A331752 6,28,468,496,775,2268,3780,4655,7448,8128,9000,10880,10976,25137, %T A331752 40131,40176,58752,62775,66960,91000,137541,137940,140800,160930, %U A331752 167400,173600,195938,224450,307125,377055,399360,406224,417477,494832,569184,603288,634725,639158,658368,773175,869022,881280,889056,1005480 %N A331752 Numbers k such that squarefree part of sigma(k) is equal to squarefree part of 2*k. %C A331752 Numbers k such that A007913(sigma(k)) is equal to A007913(2*k), thus numbers for which sigma(k) has the same set of distinct prime factors with an odd exponent as 2*k. %C A331752 Among the first 257 terms, these four are also in A228058: %C A331752 46277101 = 61 * 13^2 * 67^2, %C A331752 49889853 = 13 * 3^2 * 653^2, %C A331752 106706925 = 13 * 3^2 * 5^2 * 191^2, %C A331752 676830973 = 37 * 7^2 * 13^2 * 47^2. %H A331752 Antti Karttunen, <a href="/A331752/b331752.txt">Table of n, a(n) for n = 1..257</a> %H A331752 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a> %e A331752 For n = 46277101 = 61 * 13^2 * 67^2, sigma(46277101) = 51703722 = 2 * 3^2 * 7^2 * 31^2 * 61, with A007913(sigma(46277101)) = 2*61 = A007913(2*46277101), thus 46277101 is included in this sequence. %t A331752 Select[Range[10^6], SameQ @@ Map[Sqrt[#] /. (c_: 1)*a_^(b_: 0) :> (c*a^b)^2 &, {DivisorSigma[1, #], 2 #}] &] (* _Michael De Vlieger_, Feb 08 2020, after _Bill Gosper_ at A007913 *) %o A331752 (PARI) isA331752(n) = (core(2*n)==core(sigma(n))); %Y A331752 Cf. A000203, A006532, A007913, A228058, A331751, A332208. %Y A331752 Cf. A000396 (a subsequence). %K A331752 nonn %O A331752 1,1 %A A331752 _Antti Karttunen_, Feb 06 2020