cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331763 Number of vertices formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).

This page as a plain text file.
%I A331763 #38 Jan 14 2023 09:55:26
%S A331763 13,37,99,213,401,657,1085,1619,2327,3257,4457,5883,7751,9885,12403,
%T A331763 15513,19131,23181,28115,33601,39745,46821,54865,63733,73879,84889,
%U A331763 97063,110639,125649,141797,160129,179981,201175,224481,249403,276291,306003,337425
%N A331763 Number of vertices formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
%C A331763 Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
%C A331763 See A331452 for other illustrations.
%H A331763 Lars Blomberg, <a href="/A331763/b331763.txt">Table of n, a(n) for n = 1..100</a>
%H A331763 Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2020). Also arXiv:2009.07918.
%H A331763 Scott R. Shannon, <a href="/A331452/a331452_13.png">Colored illustration for a(3) = 99</a>
%H A331763 Scott R. Shannon, <a href="/A331452/a331452_1.txt">Data specifically for nX2 (or 2Xn) rectangles</a>
%H A331763 N. J. A. Sloane (in collaboration with Scott R. Shannon), <a href="/A331452/a331452.pdf">Art and Sequences</a>, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
%H A331763 N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 20.
%Y A331763 Column 2 of A331453.
%Y A331763 Cf. A331765, A331766, A331767.
%K A331763 nonn
%O A331763 1,1
%A A331763 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 05 2020
%E A331763 More terms from _Scott R. Shannon_, Mar 11 2020
%E A331763 a(21) and beyond from _Lars Blomberg_, Apr 28 2020