This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331764 #29 Jul 09 2025 04:50:59 %S A331764 0,1,12,45,225,396,960,1377,2541,5292,6525,11340,15600,18081,23805, %T A331764 34476,47937,53100,70785,84525,92016,117117,136161,168432,218880, %U A331764 247500,262701,294945,312012,348096,496125,545025,624240,652257,804972,838125,943020 %N A331764 a(n) = ((p-1)^3 - (p-1)^2)/4 where p is the n-th prime. %H A331764 Alois P. Heinz, <a href="/A331764/b331764.txt">Table of n, a(n) for n = 1..10000</a> %H A331764 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sum</a> %F A331764 Theorem: a(n) = Sum_{i=1..p-1, j=1..p-1} floor(i*j/p). The proof is based on the formula for p-g-c-d of Marcelo Polezzi. - _Jean-Claude Babois_ %F A331764 a(n) == 0 (mod 3) for n >= 3. - _Hugo Pfoertner_, Aug 23 2021 %p A331764 a:= n-> (p-> ((p-1)^3-(p-1)^2)/4)(ithprime(n)): %p A331764 seq(a(n), n=1..40); # _Alois P. Heinz_, Feb 05 2020 %t A331764 Table[((Prime[n] - 1)^3 - (Prime[n] - 1)^2)/4, {n, 20}] (* _Eric W. Weisstein_, Aug 22 2021 *) %t A331764 Table[((Prime[n] - 2) (Prime[n] - 1)^2)/4, {n, 20}] (* _Eric W. Weisstein_, Aug 22 2021 *) %t A331764 Table[Times @@ (Prime[n] - {1, 1, 2})/4, {n, 20}] (* _Eric W. Weisstein_, Aug 22 2021 *) %t A331764 Table[Sum[Floor[i j/Prime[n]], {i, Prime[n] - 1}, {j, Prime[n] - 1}], {n, 20}] (* _Eric W. Weisstein_, Aug 22 2021 *) %K A331764 nonn %O A331764 1,3 %A A331764 _N. J. A. Sloane_, Feb 05 2020 following a suggestion from _Jean-Claude Babois_