This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331781 #20 Dec 04 2022 19:07:58 %S A331781 0,0,1,0,2,3,0,3,5,7,0,4,6,9,11,0,5,8,12,15,19,0,6,9,13,16,21,23,0,7, %T A331781 11,16,20,26,29,35,0,8,12,18,22,29,32,39,43,0,9,14,20,25,33,36,44,49, %U A331781 55,0,10,15,22,27,35,38,47,52,59,63,0,11,17,25,31,40,44,54,60,68,73,83 %N A331781 Triangle read by rows: T(m,n) = Sum_{0<i<m, 0<j<n, gcd{i,j}=1} 1, where m >= n >= 1. %H A331781 M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. <a href="https://doi.org/10.1137/140978090">On the minimal teaching sets of two-dimensional threshold functions</a>. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Lemma 11. %e A331781 Triangle begins: %e A331781 0, %e A331781 0, 1, %e A331781 0, 2, 3, %e A331781 0, 3, 5, 7, %e A331781 0, 4, 6, 9, 11, %e A331781 0, 5, 8, 12, 15, 19, %e A331781 0, 6, 9, 13, 16, 21, 23, %e A331781 0, 7, 11, 16, 20, 26, 29, 35, %e A331781 0, 8, 12, 18, 22, 29, 32, 39, 43, %e A331781 0, 9, 14, 20, 25, 33, 36, 44, 49, 55 %e A331781 ... %p A331781 VS := proc(m,n) local a,i,j; a:=0; %p A331781 for i from 1 to m-1 do for j from 1 to n-1 do %p A331781 if gcd(i,j)=1 then a:=a+1; fi; od: od: a; end; %p A331781 for m from 1 to 12 do lprint([seq(VS(m,n),n=1..m)]); od: %t A331781 Table[Sum[Boole[# == 1] # &@ GCD[i, j], {i, m - 1}, {j, n - 1}], {m, 12}, {n, m}] // Flatten (* _Michael De Vlieger_, Feb 12 2020 *) %Y A331781 Main diagonal is A018805. %Y A331781 A333295 is essentially the same array. %K A331781 nonn,tabl %O A331781 1,5 %A A331781 _N. J. A. Sloane_, Feb 11 2020