This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331783 #6 Feb 02 2020 09:03:41 %S A331783 1,1,2,4,8,17,37,83,191,450,1076,2610,6404,15875,39676,99880,253016, %T A331783 644524,1649918,4242226 %N A331783 Number of locally disjoint rooted semi-identity trees with n unlabeled vertices. %C A331783 Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct. %e A331783 The a(1) = 1 through a(6) = 17 trees: %e A331783 o (o) (oo) (ooo) (oooo) (ooooo) %e A331783 ((o)) ((oo)) ((ooo)) ((oooo)) %e A331783 (o(o)) (o(oo)) (o(ooo)) %e A331783 (((o))) (oo(o)) (oo(oo)) %e A331783 (((oo))) (ooo(o)) %e A331783 ((o(o))) (((ooo))) %e A331783 (o((o))) ((o(oo))) %e A331783 ((((o)))) ((oo(o))) %e A331783 (o((oo))) %e A331783 (o(o(o))) %e A331783 (oo((o))) %e A331783 ((((oo)))) %e A331783 (((o(o)))) %e A331783 ((o)((o))) %e A331783 ((o((o)))) %e A331783 (o(((o)))) %e A331783 (((((o))))) %t A331783 disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331783 ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]]; %t A331783 Table[Length[ldrsi[n]],{n,10}] %Y A331783 The lone-child-avoiding case is A212804. %Y A331783 The identity tree version is A316471. %Y A331783 The Matula-Goebel numbers of these trees are given by A331682. %Y A331783 Identity trees are A004111. %Y A331783 Semi-identity trees are A306200. %Y A331783 Locally disjoint rooted trees are A316473. %Y A331783 Matula-Goebel numbers of locally disjoint semi-identity trees are A316494. %Y A331783 Cf. A000081, A306202, A316475, A316495, A316694, A331683, A331684, A331686. %K A331783 nonn,more %O A331783 1,3 %A A331783 _Gus Wiseman_, Jan 31 2020