cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331784 Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.

This page as a plain text file.
%I A331784 #5 Feb 02 2020 09:03:50
%S A331784 1,2,3,5,7,11,13,14,17,19,21,23,26,29,31,35,37,38,39,41,43,46,47,49,
%T A331784 53,57,58,59,61,65,67,69,71,73,74,77,79,83,87,89,91,94,95,97,98,101,
%U A331784 103,106,107,109,111,113,115,119,122,127,131,133,137,139,141,142
%N A331784 Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.
%C A331784 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A331784 Conjecture: A331912(n)/a(n) -> 1 as n -> infinity.
%H A331784 Gus Wiseman, <a href="/A331784/a331784.png">Plot of A331912(n)/A331784(n) for n = 1..3729.</a>
%e A331784 The sequence of terms together with their prime indices begins:
%e A331784     1: {}        43: {14}       91: {4,6}      141: {2,15}
%e A331784     2: {1}       46: {1,9}      94: {1,15}     142: {1,20}
%e A331784     3: {2}       47: {15}       95: {3,8}      143: {5,6}
%e A331784     5: {3}       49: {4,4}      97: {25}       145: {3,10}
%e A331784     7: {4}       53: {16}       98: {1,4,4}    147: {2,4,4}
%e A331784    11: {5}       57: {2,8}     101: {26}       149: {35}
%e A331784    13: {6}       58: {1,10}    103: {27}       151: {36}
%e A331784    14: {1,4}     59: {17}      106: {1,16}     157: {37}
%e A331784    17: {7}       61: {18}      107: {28}       158: {1,22}
%e A331784    19: {8}       65: {3,6}     109: {29}       159: {2,16}
%e A331784    21: {2,4}     67: {19}      111: {2,12}     161: {4,9}
%e A331784    23: {9}       69: {2,9}     113: {30}       163: {38}
%e A331784    26: {1,6}     71: {20}      115: {3,9}      167: {39}
%e A331784    29: {10}      73: {21}      119: {4,7}      169: {6,6}
%e A331784    31: {11}      74: {1,12}    122: {1,18}     173: {40}
%e A331784    35: {3,4}     77: {4,5}     127: {31}       178: {1,24}
%e A331784    37: {12}      79: {22}      131: {32}       179: {41}
%e A331784    38: {1,8}     83: {23}      133: {4,8}      181: {42}
%e A331784    39: {2,6}     87: {2,10}    137: {33}       182: {1,4,6}
%e A331784    41: {13}      89: {24}      139: {34}       183: {2,18}
%e A331784 For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
%t A331784 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A331784 aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
%t A331784 Select[Range[100],aQ]
%Y A331784 Contains all prime numbers A000040.
%Y A331784 Numbers S without all prime indices in S are A324694.
%Y A331784 Numbers S without any prime indices in S are A324695.
%Y A331784 Numbers S with exactly one prime index in S are A331785.
%Y A331784 Numbers S with at most one distinct prime index in S are A331912.
%Y A331784 Numbers S with exactly one distinct prime index in S are A331913.
%Y A331784 Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331914.
%K A331784 nonn
%O A331784 1,2
%A A331784 _Gus Wiseman_, Feb 01 2020