This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331784 #5 Feb 02 2020 09:03:50 %S A331784 1,2,3,5,7,11,13,14,17,19,21,23,26,29,31,35,37,38,39,41,43,46,47,49, %T A331784 53,57,58,59,61,65,67,69,71,73,74,77,79,83,87,89,91,94,95,97,98,101, %U A331784 103,106,107,109,111,113,115,119,122,127,131,133,137,139,141,142 %N A331784 Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity. %C A331784 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A331784 Conjecture: A331912(n)/a(n) -> 1 as n -> infinity. %H A331784 Gus Wiseman, <a href="/A331784/a331784.png">Plot of A331912(n)/A331784(n) for n = 1..3729.</a> %e A331784 The sequence of terms together with their prime indices begins: %e A331784 1: {} 43: {14} 91: {4,6} 141: {2,15} %e A331784 2: {1} 46: {1,9} 94: {1,15} 142: {1,20} %e A331784 3: {2} 47: {15} 95: {3,8} 143: {5,6} %e A331784 5: {3} 49: {4,4} 97: {25} 145: {3,10} %e A331784 7: {4} 53: {16} 98: {1,4,4} 147: {2,4,4} %e A331784 11: {5} 57: {2,8} 101: {26} 149: {35} %e A331784 13: {6} 58: {1,10} 103: {27} 151: {36} %e A331784 14: {1,4} 59: {17} 106: {1,16} 157: {37} %e A331784 17: {7} 61: {18} 107: {28} 158: {1,22} %e A331784 19: {8} 65: {3,6} 109: {29} 159: {2,16} %e A331784 21: {2,4} 67: {19} 111: {2,12} 161: {4,9} %e A331784 23: {9} 69: {2,9} 113: {30} 163: {38} %e A331784 26: {1,6} 71: {20} 115: {3,9} 167: {39} %e A331784 29: {10} 73: {21} 119: {4,7} 169: {6,6} %e A331784 31: {11} 74: {1,12} 122: {1,18} 173: {40} %e A331784 35: {3,4} 77: {4,5} 127: {31} 178: {1,24} %e A331784 37: {12} 79: {22} 131: {32} 179: {41} %e A331784 38: {1,8} 83: {23} 133: {4,8} 181: {42} %e A331784 39: {2,6} 87: {2,10} 137: {33} 182: {1,4,6} %e A331784 41: {13} 89: {24} 139: {34} 183: {2,18} %e A331784 For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence. %t A331784 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A331784 aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1; %t A331784 Select[Range[100],aQ] %Y A331784 Contains all prime numbers A000040. %Y A331784 Numbers S without all prime indices in S are A324694. %Y A331784 Numbers S without any prime indices in S are A324695. %Y A331784 Numbers S with exactly one prime index in S are A331785. %Y A331784 Numbers S with at most one distinct prime index in S are A331912. %Y A331784 Numbers S with exactly one distinct prime index in S are A331913. %Y A331784 Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331914. %K A331784 nonn %O A331784 1,2 %A A331784 _Gus Wiseman_, Feb 01 2020