This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331785 #8 Feb 02 2020 09:03:59 %S A331785 1,2,3,5,11,14,21,26,31,34,35,38,39,43,46,51,57,58,65,69,73,74,77,82, %T A331785 85,87,94,95,98,101,106,111,115,118,122,123,127,134,139,141,142,143, %U A331785 145,147,149,158,159,163,166,167,177,178,182,183,185,187,191,194,199 %N A331785 Lexicographically earliest sequence containing 1 and all positive integers with exactly one prime index already in the sequence, counting multiplicity. %C A331785 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A331785 The sequence of terms together with their prime indices begins: %e A331785 1: {} 73: {21} 142: {1,20} 205: {3,13} %e A331785 2: {1} 74: {1,12} 143: {5,6} 206: {1,27} %e A331785 3: {2} 77: {4,5} 145: {3,10} 209: {5,8} %e A331785 5: {3} 82: {1,13} 147: {2,4,4} 213: {2,20} %e A331785 11: {5} 85: {3,7} 149: {35} 214: {1,28} %e A331785 14: {1,4} 87: {2,10} 158: {1,22} 217: {4,11} %e A331785 21: {2,4} 94: {1,15} 159: {2,16} 218: {1,29} %e A331785 26: {1,6} 95: {3,8} 163: {38} 226: {1,30} %e A331785 31: {11} 98: {1,4,4} 166: {1,23} 233: {51} %e A331785 34: {1,7} 101: {26} 167: {39} 235: {3,15} %e A331785 35: {3,4} 106: {1,16} 177: {2,17} 237: {2,22} %e A331785 38: {1,8} 111: {2,12} 178: {1,24} 238: {1,4,7} %e A331785 39: {2,6} 115: {3,9} 182: {1,4,6} 245: {3,4,4} %e A331785 43: {14} 118: {1,17} 183: {2,18} 249: {2,23} %e A331785 46: {1,9} 122: {1,18} 185: {3,12} 253: {5,9} %e A331785 51: {2,7} 123: {2,13} 187: {5,7} 262: {1,32} %e A331785 57: {2,8} 127: {31} 191: {43} 265: {3,16} %e A331785 58: {1,10} 134: {1,19} 194: {1,25} 266: {1,4,8} %e A331785 65: {3,6} 139: {34} 199: {46} 267: {2,24} %e A331785 69: {2,9} 141: {2,15} 201: {2,19} 269: {57} %e A331785 For example, the prime indices of 77 are {4,5}, of which only 5 is in the sequence, so 77 is in the sequence. %t A331785 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A331785 aQ[n_]:=n==1||Length[Select[primeMS[n],aQ]]==1; %t A331785 Select[Range[100],aQ] %Y A331785 Closed under A000040. %Y A331785 Numbers S without all prime indices in S are A324694. %Y A331785 Numbers S without any prime indices in S are A324695. %Y A331785 Numbers S with at most one prime index in S are A331784. %Y A331785 Numbers S with at most one distinct prime index in S are A331912. %Y A331785 Numbers S with exactly one distinct prime index in S are A331913. %Y A331785 Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331915, A331916. %K A331785 nonn %O A331785 1,2 %A A331785 _Gus Wiseman_, Feb 01 2020