A331788 a(n) is the smallest m such that for any N, at least one of S(N), S(N+1), ..., S(N+m-1) is divisible by n, where S(N) is the sum of digits of N.
1, 3, 3, 7, 9, 9, 13, 15, 9, 19, 39, 39, 79, 99, 99, 139, 159, 99, 199, 399, 399, 799, 999, 999, 1399, 1599, 999, 1999, 3999, 3999, 7999, 9999, 9999, 13999, 15999, 9999, 19999, 39999, 39999, 79999, 99999, 99999, 139999, 159999, 99999, 199999, 399999, 399999, 799999
Offset: 1
Examples
See A331786.
Links
- Jianing Song, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).
Programs
-
PARI
a(n) = my(s=(n-1)\9, t=(n-1)%9+1); 10^s*(2*t-gcd(t,9)+1)-1
Formula
If n = 9*s + t, 1 <= t <= 9, then a(n) = 10^s*(2*t-gcd(t,9)+1) - 1. See A331787 for a proof of the formula in base b.
a(n) = A331786(n) + 1.
Conjectures from Colin Barker, Jan 26 2020: (Start)
G.f.: x*(1 + 2*x + 4*x^3 + 2*x^4 + 4*x^6 + 2*x^7 - 6*x^8) / ((1 - x)*(1 - 10*x^9)).
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n>10.
(End) [This conjecture is correct.]
a(n) = O(10^(n/9)).
Comments