cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331790 Decimal expansion of the solution to x*e^(x*e^(x))=1.

This page as a plain text file.
%I A331790 #25 Sep 07 2020 16:38:59
%S A331790 4,7,0,6,7,5,3,7,4,7,7,6,5,0,8,5,2,6,0,7,8,6,1,9,8,3,6,1,4,4,6,4,9,3,
%T A331790 8,4,8,0,0,0,5,5,2,9,4,3,0,5,1,9,7,5,4,8,7,8,5,0,5,5,5,4,1,7,2,9,9,5,
%U A331790 8,5,1,3,5,4,5,6,3,1,0,7,7,7,1,8,1,4,5,7,6,8,7,4,3,3,1,6,7,0,1,4,4,1,5
%N A331790 Decimal expansion of the solution to x*e^(x*e^(x))=1.
%C A331790 Also the real solution to W(-log(x))=x where W(x) is the LambertW function.
%F A331790 Equals log(A264808).
%e A331790 0.4706753747765085260786198361446493848000552943051975487850...
%t A331790 RealDigits[x/.FindRoot[x*Exp[x*Exp[x]]-1,{x,0},WorkingPrecision-> 120]] [[1]] (* _Harvey P. Dale_, Sep 07 2020 *)
%o A331790 (PARI) solve(x=0.01, 1, x*exp(x*exp(x))-1) \\ _Michel Marcus_, Jan 26 2020
%Y A331790 Cf. A264808.
%K A331790 nonn,cons
%O A331790 0,1
%A A331790 _Connor Sponsler_, Jan 25 2020
%E A331790 Prior Mathematica program amended by _Harvey P. Dale_, Sep 07 2020