cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331799 Normalized volume of the Caracol flow polytope. Also equal to the number of "unified diagrams" of the Caracol graph (see Section 4.3 and Section 5 in Benedetti et al. reference).

This page as a plain text file.
%I A331799 #15 Feb 23 2020 14:59:36
%S A331799 1,3,32,625,18144,705894,34603008,2051893701,143000000000,
%T A331799 11464341673642,1039964049506304,105353940923859082,
%U A331799 11793014101010071552,1445828316284179687500,192713711798795989155840,27750747808814680091687085,4293818865468117678192721920
%N A331799 Normalized volume of the Caracol flow polytope. Also equal to the number of "unified diagrams" of the Caracol graph (see Section 4.3 and Section 5 in Benedetti et al. reference).
%H A331799 C. Benedetti, R. S. González D'León, C. Hanusa, P. E. Harris, A. Khare, A. H. Morales, M. Yip, <a href="https://arxiv.org/abs/1801.07684">A combinatorial model for computing volumes of flow polytopes</a>, arXiv:1801.07684 [math.CO], 2018-2019.
%H A331799 C. Benedetti, R. S. González D'León, C. Hanusa, P. E. Harris, A. Khare, A. H. Morales, M. Yip, <a href="https://doi.org/10.1090/tran/7743">A combinatorial model for computing volumes of flow polytopes</a>, Trans. Amer. Math. Soc., 372 (2019), 3369-3404.
%H A331799 J. Jang and J. S. Kim, <a href="https://arxiv.org/abs/1911.10703">Volumes of flow polytopes related to caracol graphs</a>, arXiv:1911.10703 [math.CO], 2019
%H A331799 M. Yip, <a href="https://arxiv.org/abs/1910.10060">A Fuss-Catalan variation of the caracol flow polytope</a>, arXiv:1910.10060 [math.CO], 2019.
%F A331799 a(n) =  A000108(n-1)*A000272(n+1).
%F A331799 a(n) = (1/n)*binomial(2*n-2,n-1)*(n+1)^(n-1).
%F A331799 a(n) = Sum_{i>=0..n-1} binomial(2*n-2,i)*A329057(n-1,i).
%e A331799 For n=3, a(3) = 32 = 2*(3+1)^2.
%p A331799 a:=proc(n)
%p A331799   return (1/n)*binomial(2*n-2,n-1)*(n+1)^(n-1);
%p A331799 end proc:
%t A331799 Array[(1/#) Binomial[2 # - 2, # - 1] (# + 1)^(# - 1) &, 17] (* _Michael De Vlieger_, Jan 28 2020 *)
%Y A331799 Cf. A000108, A000272, A134264.
%K A331799 nonn,easy
%O A331799 1,2
%A A331799 _Alejandro H. Morales_, Jan 26 2020