A331814 Fourier coefficients of the boundary of the Mandelbrot set (normalized by a power of two).
-1, 1, -8, 15, 0, -94, -512, 987, 0, -7346, 65536, -122058, 0, -2757820, -22020096, 59250963, 0, -329425898, 2617245696, -4805611678, -34359738368, -19403249316, 498216206336, -36302282082, 0, 14136557849100, -71399536328704, -88183884706356
Offset: 0
Keywords
Examples
a(0)=-1 because B(1,1)=0 and B(0,1) = 8*B(1,1) - 2*B(0,0) = -1; then a(1)=1 because B(1,2)=0 and B(0,2) = 8*B(1,2) - B(0,1)^2 - 2*B(0,1) = 1.
Links
- John H. Ewing and Glenn Schober, On the Coefficients of the Mapping to the Exterior of the Mandelbrot set, Michigan Math. J. 37 (1990), 315-320.
- John H. Ewing & Glenn Schober, The area of the Mandelbrot set, Numer. Math. 61 (1992) 59-72 (note that table 1 gives the coefficients of the INVERSE series).
- Irwin Jungreis, The uniformization of the complement of the Mandelbrot set, Duke Math. J. 4 (1985), 935-938.
- David A. Madore, Sage code
Formula
a(m)=B(0,m+1) where B(0,0)=1/2 and by downwards induction on k we have B(k-1,m) = 2^(2^(k+1)-1)*B(k,m) - 2^(2^(k+1)-4)*Sum_{j=2^k-1..m-2^k+1} (B(k-1,j)*B(k-1,m-j) - 2*B(0,m-2^k+1)) if m >= 2^k-1, 0 otherwise.
Comments