A331819 Positive numbers k such that -k is a negative negabinary-Niven number, i.e., divisible by the sum of digits of its negabinary representation (A027615).
2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 28, 30, 32, 33, 34, 36, 39, 40, 42, 44, 48, 54, 55, 56, 60, 63, 64, 66, 68, 70, 72, 77, 78, 80, 84, 90, 92, 96, 100, 102, 104, 108, 111, 112, 114, 115, 116, 120, 123, 124, 126, 128, 129, 130, 132, 135, 136, 138, 140
Offset: 1
Examples
6 is a term since A039724(-6) = 1110 and 1 + 1 + 1 + 0 = 3 is a divisor of 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; Select[Range[100], negaBinNivenQ]