cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

This page as a plain text file.
%I A331823 #8 Jan 28 2020 03:57:01
%S A331823 2,8,32,54,114,128,174,234,294,370,413,414,474,512,534,580,654,774,
%T A331823 894,954,1000,1014,1134,1430,1734,1794,1840,1854,1914,1974,2034,2048,
%U A331823 2093,2094,2154,2214,2334,2574,2680,2694,2814,2870,3054,3100,3520,3773,3774,3834
%N A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).
%H A331823 Amiram Eldar, <a href="/A331823/b331823.txt">Table of n, a(n) for n = 1..10000</a>
%t A331823 negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq
%Y A331823 Cf. A005352, A027615, A039724, A154701, A328210, A328214, A330932, A331087, A331090, A331728, A331819, A331822.
%K A331823 nonn,base
%O A331823 1,1
%A A331823 _Amiram Eldar_, Jan 27 2020