A331825 Positive numbers k such that -k, -(k + 1), -(k + 2), and -(k + 3) are 4 consecutive negative negabinary-Niven numbers (A331728).
413, 2093, 3773, 4613, 7133, 7973, 8813, 10493, 11869, 15829, 16373, 23749, 30653, 31493, 34853, 35629, 37373, 39589, 40733, 49133, 51469, 54585, 55429, 63349, 64253, 65513, 67613, 70965, 75229, 91069, 98989, 102949, 103725, 106909, 110869, 114653, 129773, 131033
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 4; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 45, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq