A331832 Numbers k such that all the divisors of k have an odd number of 1's in their negabinary representations.
1, 3, 9, 11, 23, 29, 33, 41, 43, 47, 53, 59, 69, 71, 83, 89, 101, 103, 109, 113, 129, 131, 137, 139, 149, 151, 157, 163, 181, 191, 197, 199, 211, 227, 233, 239, 249, 251, 263, 269, 281, 283, 293, 307, 311, 317, 331, 349, 353, 367, 373, 379, 383, 389, 397, 401
Offset: 1
Examples
9 is a term since all of its divisors, 1, 3 and 9, or 1, 111, and 11001 in negabinary representation, have an odd number of 1's.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
negaBinWt[n_] := negaBinWt[n] = If[n==0, 0, negaBinWt[Quotient[n-1, -2]] + Mod[n, 2]]; odNegaBinQ[n_] := OddQ[negaBinWt[n]]; seqQ[n_] := AllTrue[Divisors[n], odNegaBinQ]; Select[Range[401],seqQ]