A331871 Matula-Goebel numbers of lone-child-avoiding locally disjoint rooted trees.
1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1
Keywords
Examples
The sequence of all lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins: 1: o 4: (oo) 8: (ooo) 14: (o(oo)) 16: (oooo) 28: (oo(oo)) 32: (ooooo) 38: (o(ooo)) 49: ((oo)(oo)) 56: (ooo(oo)) 64: (oooooo) 76: (oo(ooo)) 86: (o(o(oo))) 98: (o(oo)(oo)) 106: (o(oooo)) 112: (oooo(oo)) 128: (ooooooo) 152: (ooo(ooo)) 172: (oo(o(oo))) 196: (oo(oo)(oo)) The sequence of terms together with their prime indices begins: 1: {} 212: {1,1,16} 4: {1,1} 214: {1,28} 8: {1,1,1} 224: {1,1,1,1,1,4} 14: {1,4} 256: {1,1,1,1,1,1,1,1} 16: {1,1,1,1} 262: {1,32} 28: {1,1,4} 304: {1,1,1,1,8} 32: {1,1,1,1,1} 326: {1,38} 38: {1,8} 343: {4,4,4} 49: {4,4} 344: {1,1,1,14} 56: {1,1,1,4} 361: {8,8} 64: {1,1,1,1,1,1} 392: {1,1,1,4,4} 76: {1,1,8} 424: {1,1,1,16} 86: {1,14} 428: {1,1,28} 98: {1,4,4} 448: {1,1,1,1,1,1,4} 106: {1,16} 454: {1,49} 112: {1,1,1,1,4} 512: {1,1,1,1,1,1,1,1,1} 128: {1,1,1,1,1,1,1} 524: {1,1,32} 152: {1,1,1,8} 526: {1,56} 172: {1,1,14} 608: {1,1,1,1,1,8} 196: {1,1,4,4} 622: {1,64}
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Programs
-
Mathematica
msQ[n_]:=n==1||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[1000],msQ]
Comments