This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331872 #6 Feb 03 2020 22:18:00 %S A331872 1,1,1,2,4,6,12,19,35,59,104,179,318,556,993,1772,3202,5807,10643, %T A331872 19594,36380,67915 %N A331872 Number of semi-lone-child-avoiding locally disjoint rooted trees with n vertices. %C A331872 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. %C A331872 Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. %H A331872 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331872 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331872 The a(1) = 1 through a(8) = 19 trees: %e A331872 o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo) %e A331872 (o(o)) (o(oo)) (o(ooo)) (o(oooo)) (o(ooooo)) %e A331872 (oo(o)) (oo(oo)) (oo(ooo)) (oo(oooo)) %e A331872 ((o)(o)) (ooo(o)) (ooo(oo)) (ooo(ooo)) %e A331872 (o(o)(o)) (oooo(o)) (oooo(oo)) %e A331872 (o(o(o))) ((oo)(oo)) (ooooo(o)) %e A331872 (o(o(oo))) (o(o(ooo))) %e A331872 (o(oo(o))) (o(oo)(oo)) %e A331872 (oo(o)(o)) (o(oo(oo))) %e A331872 (oo(o(o))) (o(ooo(o))) %e A331872 ((o)(o)(o)) (oo(o(oo))) %e A331872 (o((o)(o))) (oo(oo(o))) %e A331872 (ooo(o)(o)) %e A331872 (ooo(o(o))) %e A331872 (o(o)(o)(o)) %e A331872 (o(o(o)(o))) %e A331872 (o(o(o(o)))) %e A331872 (oo((o)(o))) %e A331872 ((o)((o)(o))) %t A331872 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331872 strutsemi[n_]:=If[n==1,{{}},If[n==2,{{{}}},Select[Join@@Function[c,Union[Sort/@Tuples[strutsemi/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]]; %t A331872 Table[Length[strutsemi[n]],{n,8}] %Y A331872 Not requiring lone-child-avoidance gives A316473. %Y A331872 The non-semi version is A331680. %Y A331872 The Matula-Goebel numbers of these trees are A331873. %Y A331872 The same trees counted by number of leaves are A331874. %Y A331872 Not requiring local disjointness gives A331934. %Y A331872 Lone-child-avoiding rooted trees are A001678. %Y A331872 Cf. A000081, A050381, A316696, A316697, A331678, A331679, A331681, A331686, A331687, A331871, A331935. %K A331872 nonn,more %O A331872 1,4 %A A331872 _Gus Wiseman_, Feb 02 2020