A331873 Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted trees.
1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 69, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 138, 144, 148, 152, 161, 162, 169, 172, 178, 184, 192, 196, 202, 206, 207, 208, 212, 214, 216, 224, 243
Offset: 1
Keywords
Examples
The sequence of all semi-lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 6: (o(o)) 8: (ooo) 9: ((o)(o)) 12: (oo(o)) 14: (o(oo)) 16: (oooo) 18: (o(o)(o)) 24: (ooo(o)) 26: (o(o(o))) 27: ((o)(o)(o)) 28: (oo(oo)) 32: (ooooo) 36: (oo(o)(o)) 38: (o(ooo)) 46: (o((o)(o))) 48: (oooo(o)) 49: ((oo)(oo))
Links
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
Crossrefs
Not requiring lone-child-avoidance gives A316495.
A superset of A320269.
The semi-identity tree case is A331681.
The non-semi version (i.e., not containing 2) is A331871.
These trees counted by vertices are A331872.
These trees counted by leaves are A331874.
Not requiring local disjointness gives A331935.
The identity tree case is A331937.
Programs
-
Mathematica
msQ[n_]:=n==1||n==2||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; Select[Range[100],msQ]
Comments