This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331874 #7 Feb 03 2020 22:18:15 %S A331874 2,3,8,24,67,214,687,2406,8672,32641,125431,493039,1964611 %N A331874 Number of semi-lone-child-avoiding locally disjoint rooted trees with n unlabeled leaves. %C A331874 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. %C A331874 Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. %H A331874 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331874 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331874 The a(1) = 2 through a(4) = 24 trees: %e A331874 o (oo) (ooo) (oooo) %e A331874 (o) (o(o)) (o(oo)) (o(ooo)) %e A331874 ((o)(o)) (oo(o)) (oo(oo)) %e A331874 (o(o)(o)) (ooo(o)) %e A331874 (o(o(o))) ((oo)(oo)) %e A331874 ((o)(o)(o)) (o(o(oo))) %e A331874 (o((o)(o))) (o(oo(o))) %e A331874 ((o)((o)(o))) (oo(o)(o)) %e A331874 (oo(o(o))) %e A331874 (o(o)(o)(o)) %e A331874 (o(o(o)(o))) %e A331874 (o(o(o(o)))) %e A331874 (oo((o)(o))) %e A331874 ((o)(o)(o)(o)) %e A331874 ((o(o))(o(o))) %e A331874 ((oo)((o)(o))) %e A331874 (o((o)(o)(o))) %e A331874 (o(o)((o)(o))) %e A331874 (o(o((o)(o)))) %e A331874 ((o)((o)(o)(o))) %e A331874 ((o)(o)((o)(o))) %e A331874 (o((o)((o)(o)))) %e A331874 (((o)(o))((o)(o))) %e A331874 ((o)((o)((o)(o)))) %t A331874 disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}]; %t A331874 slaurt[n_]:=If[n==1,{o,{o}},Join@@Table[Select[Union[Sort/@Tuples[slaurt/@ptn]],disjointQ[Select[#,!AtomQ[#]&]]&],{ptn,Rest[IntegerPartitions[n]]}]]; %t A331874 Table[Length[slaurt[n]],{n,8}] %Y A331874 Not requiring local disjointness gives A050381. %Y A331874 The non-semi version is A316697. %Y A331874 The same trees counted by number of vertices are A331872. %Y A331874 The Matula-Goebel numbers of these trees are A331873. %Y A331874 Lone-child-avoiding rooted trees counted by leaves are A000669. %Y A331874 Semi-lone-child-avoiding rooted trees counted by vertices are A331934. %Y A331874 Cf. A000081, A001678, A300660, A316473, A316495, A316696, A331678, A331679, A331680, A331682, A331687, A331871, A331935. %K A331874 nonn,more %O A331874 1,1 %A A331874 _Gus Wiseman_, Feb 02 2020