This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331889 #25 Jul 24 2023 04:53:42 %S A331889 1,3,2,6,10,6,10,28,54,24,15,60,214,402,120,21,110,594,2348,3810,720, %T A331889 28,182,1334,8556,32808,43776,5040,36,280,2614 %N A331889 Table T(n,k) read by upward antidiagonals. T(n,k) is the minimum value of Sum_{i=1..n} Product_{j=1..k} r[(i-1)*k+j] among all permutations r of {1..kn}. %C A331889 k 1 2 3 4 5 6 7 8 9 10 11 12 %C A331889 --------------------------------------------------------------------------------- %C A331889 n 1| 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 %C A331889 2| 3 10 54 402 3810 43776 %C A331889 3| 6 28 214 2348 32808 %C A331889 4| 10 60 594 8556 %C A331889 5| 15 110 1334 %C A331889 6| 21 182 2614 %C A331889 7| 28 280 %C A331889 8| 36 408 %C A331889 9| 45 570 %C A331889 10| 55 770 %H A331889 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020-2022. %F A331889 T(n,k) >= ceiling(n*((kn)!)^(1/n)). %F A331889 T(n,1) = n*(n+1)/2 = A000217(n). %F A331889 T(1,k) = k! = A000142(k). %F A331889 T(n,3) = A072368(n). %F A331889 T(n,2) = n*(n+1)*(2*n+1)/3 = A006331(n). %o A331889 (Python) %o A331889 from itertools import combinations, permutations %o A331889 from sympy import factorial %o A331889 def T(n,k): # T(n,k) for A331889 %o A331889 if k == 1: %o A331889 return n*(n+1)//2 %o A331889 if n == 1: %o A331889 return int(factorial(k)) %o A331889 if k == 2: %o A331889 return n*(n+1)*(2*n+1)//3 %o A331889 nk = n*k %o A331889 nktuple = tuple(range(1,nk+1)) %o A331889 nkset = set(nktuple) %o A331889 count = int(factorial(nk)) %o A331889 for firsttuple in combinations(nktuple,n): %o A331889 nexttupleset = nkset-set(firsttuple) %o A331889 for s in permutations(sorted(nexttupleset),nk-2*n): %o A331889 llist = sorted(nexttupleset-set(s),reverse=True) %o A331889 t = list(firsttuple) %o A331889 for i in range(0,k-2): %o A331889 itn = i*n %o A331889 for j in range(n): %o A331889 t[j] *= s[itn+j] %o A331889 t.sort() %o A331889 v = 0 %o A331889 for i in range(n): %o A331889 v += llist[i]*t[i] %o A331889 if v < count: %o A331889 count = v %o A331889 return count %Y A331889 Cf. A000142, A000217, A006331, A072368. %K A331889 nonn,more,tabl %O A331889 1,2 %A A331889 _Chai Wah Wu_, Mar 20 2020