A331896 Positive numbers all of whose divisors are negabinary palindromes (A331891).
1, 3, 5, 7, 11, 17, 21, 23, 31, 43, 51, 77, 85, 103, 127, 155, 211, 217, 233, 257, 301, 341, 479, 635, 683, 739, 771, 857, 889, 937, 1117, 1229, 1285, 1333, 1367, 1799, 1951, 2111, 2159, 2383, 2395, 2459, 2731, 2827, 3187, 3251, 3347, 3937, 4001, 4273, 4369
Offset: 1
Examples
21 is a term since all the divisors of 21, {1, 3, 7, 21}, are palindromes in negabinary representation: {1, 111, 11011, 10101}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; nbPalinQ[n_] := PalindromeQ @ negabin[n]; negaBinAllDivPalQ[n_] := nbPalinQ[n] && AllTrue[Most @ Divisors[n], nbPalinQ]; Select[Range[5000], negaBinAllDivPalQ]
Comments