A331894 Positive numbers such that both their binary and negabinary representations are palindromic.
0, 1, 3, 5, 7, 17, 21, 31, 51, 65, 85, 127, 195, 257, 273, 325, 341, 455, 511, 771, 819, 1025, 1105, 1285, 1365, 1799, 2047, 3075, 4097, 4161, 4369, 4433, 5125, 5189, 5397, 5461, 7175, 7967, 8191, 12291, 12483, 13107, 16385, 16705, 17425, 17745, 20485, 20805
Offset: 1
Examples
7 is a term since the binary representation of 7, 111, and the negabinary representation of 7, 11011, are both palindromic.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; Select[Range[0, 2*10^4], And @@ (PalindromeQ /@ {IntegerDigits[#, 2], negabin[#]}) &]
Comments