This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331902 #15 Feb 04 2020 21:25:00 %S A331902 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,3,0,0,0,0,0,0,1,1,0, %T A331902 0,0,0,0,0,1,4,1,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,5,1,0,0,0,0,0,0, %U A331902 0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,1,6,1,0 %N A331902 T(n, k) = floor(n/m) where m is the least positive integer such that floor(n/m) = floor(k/m). Square array read by antidiagonals, for n >= 0 and k >= 0. %C A331902 For any n > 0, the n-th row has A001651(n) nonzero terms. %H A331902 Rémy Sigrist, <a href="/A331902/b331902.txt">Table of n, a(n) for n = 0..10010</a> (antidiagonals 0..140) %H A331902 Rémy Sigrist, <a href="/A331886/a331886_1.png">Colored representation of T(n, k) for n, k = 0..1000</a> (where the hue is function of T(n, k), red pixels correspond to 0's) %F A331902 T(n, k) = floor(n/A331886(n, k)) = floor(k/A331886(n, k)). %F A331902 T(n, k) = T(k, n). %F A331902 T(n, k) = 0 iff max(n, k) >= 2*min(n, k). %F A331902 T(n, n+1) = A213633(n+1). %e A331902 Array T(n, k) begins (with dots instead of 0's for readability): %e A331902 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A331902 ---+---------------------------------------------------- %e A331902 0| . . . . . . . . . . . . . %e A331902 1| . 1 . . . . . . . . . . . %e A331902 2| . . 2 1 . . . . . . . . . %e A331902 3| . . 1 3 1 1 . . . . . . . %e A331902 4| . . . 1 4 2 1 1 . . . . . %e A331902 5| . . . 1 2 5 1 1 1 1 . . . %e A331902 6| . . . . 1 1 6 3 2 1 1 1 . %e A331902 7| . . . . 1 1 3 7 2 1 1 1 1 %e A331902 8| . . . . . 1 2 2 8 4 2 2 1 %e A331902 9| . . . . . 1 1 1 4 9 3 3 1 %e A331902 10| . . . . . . 1 1 2 3 10 5 2 %e A331902 11| . . . . . . 1 1 2 3 5 11 2 %e A331902 12| . . . . . . . 1 1 1 2 2 12 %o A331902 (PARI) T(n,k) = for (x=1, oo, if (n\x==k\x, return (n\x))) %Y A331902 Cf. A001651, A213633, A331886. %K A331902 nonn,tabl %O A331902 0,13 %A A331902 _Rémy Sigrist_, Jan 31 2020