cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331911 Triangle read by rows: Take an equilateral triangle with all diagonals drawn, as in A092867. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., n+2 and where n is the number of equal parts each side is divided into.

Original entry on oeis.org

1, 12, 0, 48, 24, 3, 162, 90, 0, 0, 378, 306, 15, 16, 0, 774, 696, 84, 18, 0, 0, 1470, 1383, 219, 37, 0, 0, 0, 2604, 2382, 600, 78, 6, 6, 0, 0, 4224, 4089, 771, 177, 24, 6, 0, 0, 0, 6624, 6186, 1470, 234, 42, 0, 0, 0, 0, 0, 9738, 9486, 2307, 498, 48, 0, 0, 3, 0, 1, 0, 14010, 13548, 3984, 816, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			An equilateral triangle with no other point along its edges, n = 1, contains 1 triangle so the first row is [1]. An equilateral triangle with 1 point dividing its edges, n = 2, contains 12 triangles and no other n-gons, so the second row is [12,0]. An equilateral triangle with 2 points dividing its edges, n = 3, contains 48 triangles, 24 quadrilaterals and 3 pentagons, so the third row is [48,24,3].
Triangle begins:
1
12,0
48,24,3
162,90,0,0
378,306,15,16,0
774,696,84,18,0,0
1470,1383,219,37,0,0,0
2604,2382,600,78,6,6,0,0
4224,4089,771,177,24,6,0,0,0
6624,6186,1470,234,42,0,0,0,0,0
9738,9486,2307,498,48,0,0,3,0,1,0
14010,13548,3984,816,144,0,0,0,0,0,0,0
19248,19224,5007,1102,156,18,0,0,0,0,0,0,0
26208,26142,8634,1668,192,24,0,0,0,0,0,0,0,0
The row sums are A092867.
		

Crossrefs