cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331912 Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.

This page as a plain text file.
%I A331912 #5 Feb 02 2020 09:04:09
%S A331912 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,26,27,29,31,32,37,39,41,43,47,
%T A331912 49,52,53,58,59,61,64,65,67,71,73,74,79,81,83,86,87,89,91,94,97,101,
%U A331912 103,104,107,109,111,113,116,117,121,122,125,127,128,129,131,137
%N A331912 Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.
%C A331912 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A331912 Conjecture: a(n)/A331784(n) -> 1 as n -> infinity.
%H A331912 Gus Wiseman, <a href="/A331912/a331912.png">Plot of A331912(n)/A331784(n) for n = 1..3729.</a>
%e A331912 The sequence of terms together with their prime indices begins:
%e A331912     1: {}              37: {12}              86: {1,14}
%e A331912     2: {1}             39: {2,6}             87: {2,10}
%e A331912     3: {2}             41: {13}              89: {24}
%e A331912     4: {1,1}           43: {14}              91: {4,6}
%e A331912     5: {3}             47: {15}              94: {1,15}
%e A331912     7: {4}             49: {4,4}             97: {25}
%e A331912     8: {1,1,1}         52: {1,1,6}          101: {26}
%e A331912     9: {2,2}           53: {16}             103: {27}
%e A331912    11: {5}             58: {1,10}           104: {1,1,1,6}
%e A331912    13: {6}             59: {17}             107: {28}
%e A331912    16: {1,1,1,1}       61: {18}             109: {29}
%e A331912    17: {7}             64: {1,1,1,1,1,1}    111: {2,12}
%e A331912    19: {8}             65: {3,6}            113: {30}
%e A331912    23: {9}             67: {19}             116: {1,1,10}
%e A331912    25: {3,3}           71: {20}             117: {2,2,6}
%e A331912    26: {1,6}           73: {21}             121: {5,5}
%e A331912    27: {2,2,2}         74: {1,12}           122: {1,18}
%e A331912    29: {10}            79: {22}             125: {3,3,3}
%e A331912    31: {11}            81: {2,2,2,2}        127: {31}
%e A331912    32: {1,1,1,1,1}     83: {23}             128: {1,1,1,1,1,1,1}
%e A331912 For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
%t A331912 aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;
%t A331912 Select[Range[100],aQ]
%Y A331912 Contains all prime powers A000961.
%Y A331912 Numbers S without all prime indices in S are A324694.
%Y A331912 Numbers S without any prime indices in S are A324695.
%Y A331912 Numbers S with at most one prime index in S are A331784.
%Y A331912 Numbers S with exactly one prime index in S are A331785.
%Y A331912 Numbers S with exactly one distinct prime index in S are A331913.
%Y A331912 Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331914.
%K A331912 nonn
%O A331912 1,2
%A A331912 _Gus Wiseman_, Feb 01 2020