This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331913 #6 Feb 02 2020 09:04:17 %S A331913 1,2,3,4,5,7,8,9,11,16,17,19,23,25,26,27,31,32,39,49,52,53,58,59,64, %T A331913 65,67,74,81,82,83,86,87,91,94,97,101,103,104,111,116,117,121,122,123, %U A331913 125,127,128,129,131,141,142,143,145,146,148,158,164,167,172,178 %N A331913 Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence. %C A331913 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A331913 The sequence of terms together with their prime indices begins: %e A331913 1: {} 52: {1,1,6} 116: {1,1,10} %e A331913 2: {1} 53: {16} 117: {2,2,6} %e A331913 3: {2} 58: {1,10} 121: {5,5} %e A331913 4: {1,1} 59: {17} 122: {1,18} %e A331913 5: {3} 64: {1,1,1,1,1,1} 123: {2,13} %e A331913 7: {4} 65: {3,6} 125: {3,3,3} %e A331913 8: {1,1,1} 67: {19} 127: {31} %e A331913 9: {2,2} 74: {1,12} 128: {1,1,1,1,1,1,1} %e A331913 11: {5} 81: {2,2,2,2} 129: {2,14} %e A331913 16: {1,1,1,1} 82: {1,13} 131: {32} %e A331913 17: {7} 83: {23} 141: {2,15} %e A331913 19: {8} 86: {1,14} 142: {1,20} %e A331913 23: {9} 87: {2,10} 143: {5,6} %e A331913 25: {3,3} 91: {4,6} 145: {3,10} %e A331913 26: {1,6} 94: {1,15} 146: {1,21} %e A331913 27: {2,2,2} 97: {25} 148: {1,1,12} %e A331913 31: {11} 101: {26} 158: {1,22} %e A331913 32: {1,1,1,1,1} 103: {27} 164: {1,1,13} %e A331913 39: {2,6} 104: {1,1,1,6} 167: {39} %e A331913 49: {4,4} 111: {2,12} 172: {1,1,14} %t A331913 aQ[n_]:=n==1||Length[Select[PrimePi/@First/@FactorInteger[n],aQ]]==1; %t A331913 Select[Range[200],aQ] %Y A331913 Contains all prime powers A000961. %Y A331913 Numbers S without all prime indices in S are A324694. %Y A331913 Numbers S without any prime indices in S are A324695. %Y A331913 Numbers S with at most one prime index in S are A331784. %Y A331913 Numbers S with exactly one prime index in S are A331785. %Y A331913 Numbers S with at most one distinct prime index in S are A331912. %Y A331913 Cf. A000002, A000720, A001222, A001462, A324696, A331683, A331873, A331915, A331916. %K A331913 nonn %O A331913 1,2 %A A331913 _Gus Wiseman_, Feb 01 2020