cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331914 Numbers with at most one prime prime index, counted with multiplicity.

This page as a plain text file.
%I A331914 #8 Jun 10 2020 14:06:26
%S A331914 1,2,3,4,5,6,7,8,10,11,12,13,14,16,17,19,20,21,22,23,24,26,28,29,31,
%T A331914 32,34,35,37,38,39,40,41,42,43,44,46,47,48,49,52,53,56,57,58,59,61,62,
%U A331914 64,65,67,68,69,70,71,73,74,76,77,78,79,80,82,83,84,86,87
%N A331914 Numbers with at most one prime prime index, counted with multiplicity.
%C A331914 First differs from A324935 in having 39.
%C A331914 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A331914 The sequence of terms together with their prime indices begins:
%e A331914    1: {}           24: {1,1,1,2}      52: {1,1,6}
%e A331914    2: {1}          26: {1,6}          53: {16}
%e A331914    3: {2}          28: {1,1,4}        56: {1,1,1,4}
%e A331914    4: {1,1}        29: {10}           57: {2,8}
%e A331914    5: {3}          31: {11}           58: {1,10}
%e A331914    6: {1,2}        32: {1,1,1,1,1}    59: {17}
%e A331914    7: {4}          34: {1,7}          61: {18}
%e A331914    8: {1,1,1}      35: {3,4}          62: {1,11}
%e A331914   10: {1,3}        37: {12}           64: {1,1,1,1,1,1}
%e A331914   11: {5}          38: {1,8}          65: {3,6}
%e A331914   12: {1,1,2}      39: {2,6}          67: {19}
%e A331914   13: {6}          40: {1,1,1,3}      68: {1,1,7}
%e A331914   14: {1,4}        41: {13}           69: {2,9}
%e A331914   16: {1,1,1,1}    42: {1,2,4}        70: {1,3,4}
%e A331914   17: {7}          43: {14}           71: {20}
%e A331914   19: {8}          44: {1,1,5}        73: {21}
%e A331914   20: {1,1,3}      46: {1,9}          74: {1,12}
%e A331914   21: {2,4}        47: {15}           76: {1,1,8}
%e A331914   22: {1,5}        48: {1,1,1,1,2}    77: {4,5}
%e A331914   23: {9}          49: {4,4}          78: {1,2,6}
%t A331914 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A331914 Select[Range[100],Count[primeMS[#],_?PrimeQ]<=1&]
%Y A331914 These are numbers n such that A257994(n) <= 1.
%Y A331914 Prime-indexed primes are A006450, with products A076610.
%Y A331914 The number of distinct prime prime indices is A279952.
%Y A331914 Numbers with at least one prime prime index are A331386.
%Y A331914 The set S of numbers with at most one prime index in S are A331784.
%Y A331914 The set S of numbers with at most one distinct prime index in S are A331912.
%Y A331914 Numbers with exactly one prime prime index are A331915.
%Y A331914 Numbers with exactly one distinct prime prime index are A331916.
%Y A331914 Numbers with at most one distinct prime prime index are A331995.
%Y A331914 Cf. A000040, A000720, A007097, A018252, A112798, A320628, A330945, A331785.
%K A331914 nonn
%O A331914 1,2
%A A331914 _Gus Wiseman_, Feb 08 2020