cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331915 Numbers with exactly one prime prime index, counted with multiplicity.

This page as a plain text file.
%I A331915 #5 Feb 08 2020 08:15:46
%S A331915 3,5,6,10,11,12,17,20,21,22,24,31,34,35,39,40,41,42,44,48,57,59,62,65,
%T A331915 67,68,69,70,77,78,80,82,83,84,87,88,95,96,109,111,114,115,118,119,
%U A331915 124,127,129,130,134,136,138,140,141,143,145,147,154,156,157,159
%N A331915 Numbers with exactly one prime prime index, counted with multiplicity.
%C A331915 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A331915 The sequence of terms together with their prime indices begins:
%e A331915     3: {2}             57: {2,8}            114: {1,2,8}
%e A331915     5: {3}             59: {17}             115: {3,9}
%e A331915     6: {1,2}           62: {1,11}           118: {1,17}
%e A331915    10: {1,3}           65: {3,6}            119: {4,7}
%e A331915    11: {5}             67: {19}             124: {1,1,11}
%e A331915    12: {1,1,2}         68: {1,1,7}          127: {31}
%e A331915    17: {7}             69: {2,9}            129: {2,14}
%e A331915    20: {1,1,3}         70: {1,3,4}          130: {1,3,6}
%e A331915    21: {2,4}           77: {4,5}            134: {1,19}
%e A331915    22: {1,5}           78: {1,2,6}          136: {1,1,1,7}
%e A331915    24: {1,1,1,2}       80: {1,1,1,1,3}      138: {1,2,9}
%e A331915    31: {11}            82: {1,13}           140: {1,1,3,4}
%e A331915    34: {1,7}           83: {23}             141: {2,15}
%e A331915    35: {3,4}           84: {1,1,2,4}        143: {5,6}
%e A331915    39: {2,6}           87: {2,10}           145: {3,10}
%e A331915    40: {1,1,1,3}       88: {1,1,1,5}        147: {2,4,4}
%e A331915    41: {13}            95: {3,8}            154: {1,4,5}
%e A331915    42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
%e A331915    44: {1,1,5}        109: {29}             157: {37}
%e A331915    48: {1,1,1,1,2}    111: {2,12}           159: {2,16}
%t A331915 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A331915 Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]
%Y A331915 These are numbers n such that A257994(n) = 1.
%Y A331915 Prime-indexed primes are A006450, with products A076610.
%Y A331915 The number of distinct prime prime indices is A279952.
%Y A331915 Numbers with at least one prime prime index are A331386.
%Y A331915 The set S of numbers with exactly one prime index in S are A331785.
%Y A331915 The set S of numbers with exactly one distinct prime index in S are A331913.
%Y A331915 Numbers with at most one prime prime index are A331914.
%Y A331915 Numbers with exactly one distinct prime prime index are A331916.
%Y A331915 Numbers with at most one distinct prime prime index are A331995.
%Y A331915 Cf. A000040, A000720, A007097, A007821, A018252, A112798, A289509, A320628, A330944, A330945, A331784.
%K A331915 nonn
%O A331915 1,1
%A A331915 _Gus Wiseman_, Feb 08 2020