This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331929 #21 May 11 2020 09:44:57 %S A331929 11,170,1161,3900,10741,22380,44491,76610,126336,194070,290651,410860, %T A331929 577721,779340,1035676,1345030,1730696,2176040,2724036,3345880, %U A331929 4087656,4933200,5921991,7018210,8300896,9723300,11339151,13122120,15150271,17345140,19843056 %N A331929 The number of regions inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts. %C A331929 The terms are from numeric computation - no formula for a(n) is currently known. %H A331929 Lars Blomberg, <a href="/A331929/b331929.txt">Table of n, a(n) for n = 1..35</a> %H A331929 Scott R. Shannon, <a href="/A331929/a331929.png">Pentagon regions for n = 1</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_1.png">Pentagon regions for n = 2</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_2.png">Pentagon regions for n = 3</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_3.png">Pentagon regions for n = 4</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_4.png">Pentagon regions for n = 5</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_5.png">Pentagon regions for n = 6</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_6.png">Pentagon regions for n = 7</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_7.png">Pentagon regions for n = 8</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_8.png">Pentagon regions for n = 5, random distance-based coloring</a>. %H A331929 Scott R. Shannon, <a href="/A331929/a331929_9.png">Pentagon regions for n = 6, random distance-based coloring</a> %H A331929 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentagon">Pentagon</a>. %Y A331929 Cf. A331939 (n-gons), A329710 (edges), A330847 (vertices), A007678, A092867, A331452, A331931. %K A331929 nonn %O A331929 1,1 %A A331929 _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 01 2020 %E A331929 a(9) and beyond from _Lars Blomberg_, May 11 2020