cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.

This page as a plain text file.
%I A331935 #4 Feb 03 2020 22:18:37
%S A331935 1,2,4,6,8,9,12,14,16,18,21,24,26,27,28,32,36,38,39,42,46,48,49,52,54,
%T A331935 56,57,63,64,69,72,74,76,78,81,84,86,91,92,96,98,104,106,108,111,112,
%U A331935 114,117,122,126,128,129,133,138,144,146,147,148,152,156,159
%N A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.
%C A331935 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
%C A331935 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
%C A331935 Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.
%H A331935 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014).
%H A331935 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a>
%e A331935 The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
%e A331935    1: o
%e A331935    2: (o)
%e A331935    4: (oo)
%e A331935    6: (o(o))
%e A331935    8: (ooo)
%e A331935    9: ((o)(o))
%e A331935   12: (oo(o))
%e A331935   14: (o(oo))
%e A331935   16: (oooo)
%e A331935   18: (o(o)(o))
%e A331935   21: ((o)(oo))
%e A331935   24: (ooo(o))
%e A331935   26: (o(o(o)))
%e A331935   27: ((o)(o)(o))
%e A331935   28: (oo(oo))
%e A331935   32: (ooooo)
%e A331935   36: (oo(o)(o))
%e A331935   38: (o(ooo))
%e A331935   39: ((o)(o(o)))
%e A331935   42: (o(o)(oo))
%e A331935 The sequence of terms together with their prime indices begins:
%e A331935     1: {}              46: {1,9}             98: {1,4,4}
%e A331935     2: {1}             48: {1,1,1,1,2}      104: {1,1,1,6}
%e A331935     4: {1,1}           49: {4,4}            106: {1,16}
%e A331935     6: {1,2}           52: {1,1,6}          108: {1,1,2,2,2}
%e A331935     8: {1,1,1}         54: {1,2,2,2}        111: {2,12}
%e A331935     9: {2,2}           56: {1,1,1,4}        112: {1,1,1,1,4}
%e A331935    12: {1,1,2}         57: {2,8}            114: {1,2,8}
%e A331935    14: {1,4}           63: {2,2,4}          117: {2,2,6}
%e A331935    16: {1,1,1,1}       64: {1,1,1,1,1,1}    122: {1,18}
%e A331935    18: {1,2,2}         69: {2,9}            126: {1,2,2,4}
%e A331935    21: {2,4}           72: {1,1,1,2,2}      128: {1,1,1,1,1,1,1}
%e A331935    24: {1,1,1,2}       74: {1,12}           129: {2,14}
%e A331935    26: {1,6}           76: {1,1,8}          133: {4,8}
%e A331935    27: {2,2,2}         78: {1,2,6}          138: {1,2,9}
%e A331935    28: {1,1,4}         81: {2,2,2,2}        144: {1,1,1,1,2,2}
%e A331935    32: {1,1,1,1,1}     84: {1,1,2,4}        146: {1,21}
%e A331935    36: {1,1,2,2}       86: {1,14}           147: {2,4,4}
%e A331935    38: {1,8}           91: {4,6}            148: {1,1,12}
%e A331935    39: {2,6}           92: {1,1,9}          152: {1,1,1,8}
%e A331935    42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
%t A331935 mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n];
%t A331935 Select[Range[100],mseQ]
%Y A331935 The enumeration of these trees by leaves is A050381.
%Y A331935 The locally disjoint version A331873.
%Y A331935 The enumeration of these trees by nodes is A331934.
%Y A331935 The case with at most one distinct non-leaf branch of any vertex is A331936.
%Y A331935 Lone-child-avoiding rooted trees are counted by A001678.
%Y A331935 Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
%Y A331935 Cf. A000081, A000669, A007097, A061775, A196050, A320269, A330951, A331871, A331872, A331874, A331937, A331965.
%K A331935 nonn
%O A331935 1,2
%A A331935 _Gus Wiseman_, Feb 03 2020