This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331935 #4 Feb 03 2020 22:18:37 %S A331935 1,2,4,6,8,9,12,14,16,18,21,24,26,27,28,32,36,38,39,42,46,48,49,52,54, %T A331935 56,57,63,64,69,72,74,76,78,81,84,86,91,92,96,98,104,106,108,111,112, %U A331935 114,117,122,126,128,129,133,138,144,146,147,148,152,156,159 %N A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees. %C A331935 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. %C A331935 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331935 Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n. %H A331935 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331935 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %e A331935 The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins: %e A331935 1: o %e A331935 2: (o) %e A331935 4: (oo) %e A331935 6: (o(o)) %e A331935 8: (ooo) %e A331935 9: ((o)(o)) %e A331935 12: (oo(o)) %e A331935 14: (o(oo)) %e A331935 16: (oooo) %e A331935 18: (o(o)(o)) %e A331935 21: ((o)(oo)) %e A331935 24: (ooo(o)) %e A331935 26: (o(o(o))) %e A331935 27: ((o)(o)(o)) %e A331935 28: (oo(oo)) %e A331935 32: (ooooo) %e A331935 36: (oo(o)(o)) %e A331935 38: (o(ooo)) %e A331935 39: ((o)(o(o))) %e A331935 42: (o(o)(oo)) %e A331935 The sequence of terms together with their prime indices begins: %e A331935 1: {} 46: {1,9} 98: {1,4,4} %e A331935 2: {1} 48: {1,1,1,1,2} 104: {1,1,1,6} %e A331935 4: {1,1} 49: {4,4} 106: {1,16} %e A331935 6: {1,2} 52: {1,1,6} 108: {1,1,2,2,2} %e A331935 8: {1,1,1} 54: {1,2,2,2} 111: {2,12} %e A331935 9: {2,2} 56: {1,1,1,4} 112: {1,1,1,1,4} %e A331935 12: {1,1,2} 57: {2,8} 114: {1,2,8} %e A331935 14: {1,4} 63: {2,2,4} 117: {2,2,6} %e A331935 16: {1,1,1,1} 64: {1,1,1,1,1,1} 122: {1,18} %e A331935 18: {1,2,2} 69: {2,9} 126: {1,2,2,4} %e A331935 21: {2,4} 72: {1,1,1,2,2} 128: {1,1,1,1,1,1,1} %e A331935 24: {1,1,1,2} 74: {1,12} 129: {2,14} %e A331935 26: {1,6} 76: {1,1,8} 133: {4,8} %e A331935 27: {2,2,2} 78: {1,2,6} 138: {1,2,9} %e A331935 28: {1,1,4} 81: {2,2,2,2} 144: {1,1,1,1,2,2} %e A331935 32: {1,1,1,1,1} 84: {1,1,2,4} 146: {1,21} %e A331935 36: {1,1,2,2} 86: {1,14} 147: {2,4,4} %e A331935 38: {1,8} 91: {4,6} 148: {1,1,12} %e A331935 39: {2,6} 92: {1,1,9} 152: {1,1,1,8} %e A331935 42: {1,2,4} 96: {1,1,1,1,1,2} 156: {1,1,2,6} %t A331935 mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n]; %t A331935 Select[Range[100],mseQ] %Y A331935 The enumeration of these trees by leaves is A050381. %Y A331935 The locally disjoint version A331873. %Y A331935 The enumeration of these trees by nodes is A331934. %Y A331935 The case with at most one distinct non-leaf branch of any vertex is A331936. %Y A331935 Lone-child-avoiding rooted trees are counted by A001678. %Y A331935 Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636. %Y A331935 Cf. A000081, A000669, A007097, A061775, A196050, A320269, A330951, A331871, A331872, A331874, A331937, A331965. %K A331935 nonn %O A331935 1,2 %A A331935 _Gus Wiseman_, Feb 03 2020