This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331936 #15 Feb 05 2020 23:54:21 %S A331936 1,2,4,6,8,9,12,14,16,18,24,26,27,28,32,36,38,46,48,49,52,54,56,64,72, %T A331936 74,76,81,86,92,96,98,104,106,108,112,122,128,144,148,152,162,169,172, %U A331936 178,184,192,196,202,206,208,212,214,216,224,243,244,256,262,288 %N A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality). %C A331936 First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))). %C A331936 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. %C A331936 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331936 Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence. %H A331936 David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], (30-June-2014). %H A331936 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vS1zCO9fgAIe5rGiAhTtlrOTuqsmuPos2zkeFPYB80gNzLb44ufqIqksTB4uM9SIpwlvo-oOHhepywy/pub">Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.</a> %F A331936 Intersection of A320230 and A331935. %e A331936 The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins: %e A331936 1: o %e A331936 2: (o) %e A331936 4: (oo) %e A331936 6: (o(o)) %e A331936 8: (ooo) %e A331936 9: ((o)(o)) %e A331936 12: (oo(o)) %e A331936 14: (o(oo)) %e A331936 16: (oooo) %e A331936 18: (o(o)(o)) %e A331936 24: (ooo(o)) %e A331936 26: (o(o(o))) %e A331936 27: ((o)(o)(o)) %e A331936 28: (oo(oo)) %e A331936 32: (ooooo) %e A331936 36: (oo(o)(o)) %e A331936 38: (o(ooo)) %e A331936 46: (o((o)(o))) %e A331936 48: (oooo(o)) %e A331936 49: ((oo)(oo)) %e A331936 The sequence of terms together with their prime indices begins: %e A331936 1: {} 52: {1,1,6} 152: {1,1,1,8} %e A331936 2: {1} 54: {1,2,2,2} 162: {1,2,2,2,2} %e A331936 4: {1,1} 56: {1,1,1,4} 169: {6,6} %e A331936 6: {1,2} 64: {1,1,1,1,1,1} 172: {1,1,14} %e A331936 8: {1,1,1} 72: {1,1,1,2,2} 178: {1,24} %e A331936 9: {2,2} 74: {1,12} 184: {1,1,1,9} %e A331936 12: {1,1,2} 76: {1,1,8} 192: {1,1,1,1,1,1,2} %e A331936 14: {1,4} 81: {2,2,2,2} 196: {1,1,4,4} %e A331936 16: {1,1,1,1} 86: {1,14} 202: {1,26} %e A331936 18: {1,2,2} 92: {1,1,9} 206: {1,27} %e A331936 24: {1,1,1,2} 96: {1,1,1,1,1,2} 208: {1,1,1,1,6} %e A331936 26: {1,6} 98: {1,4,4} 212: {1,1,16} %e A331936 27: {2,2,2} 104: {1,1,1,6} 214: {1,28} %e A331936 28: {1,1,4} 106: {1,16} 216: {1,1,1,2,2,2} %e A331936 32: {1,1,1,1,1} 108: {1,1,2,2,2} 224: {1,1,1,1,1,4} %e A331936 36: {1,1,2,2} 112: {1,1,1,1,4} 243: {2,2,2,2,2} %e A331936 38: {1,8} 122: {1,18} 244: {1,1,18} %e A331936 46: {1,9} 128: {1,1,1,1,1,1,1} 256: {1,1,1,1,1,1,1,1} %e A331936 48: {1,1,1,1,2} 144: {1,1,1,1,2,2} 262: {1,32} %e A331936 49: {4,4} 148: {1,1,12} 288: {1,1,1,1,1,2,2} %t A331936 msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n]; %t A331936 Select[Range[100],msQ] %Y A331936 A superset of A000079. %Y A331936 The non-lone-child-avoiding version is A320230. %Y A331936 The non-semi version is A320269. %Y A331936 These trees are counted by A331933. %Y A331936 Not requiring semi-achirality gives A331935. %Y A331936 The fully-achiral case is A331992. %Y A331936 Achiral trees are counted by A003238. %Y A331936 Numbers with at most one distinct odd prime factor are A070776. %Y A331936 Matula-Goebel numbers of achiral rooted trees are A214577. %Y A331936 Matula-Goebel numbers of semi-identity trees are A306202. %Y A331936 Numbers S with at most one distinct prime index in S are A331912. %Y A331936 Cf. A001678, A007097, A050381, A061775, A196050, A291636, A331784, A331873, A331914, A331934, A331965, A331967, A331991. %K A331936 nonn %O A331936 1,2 %A A331936 _Gus Wiseman_, Feb 03 2020