This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331942 #6 Feb 02 2020 22:23:01 %S A331942 1,4,9,20,48,121,317,855,2356,6609,18787,53970,156385,456404,1340088, %T A331942 3955219,11726332,34903256,104251560,312353236,938461459,2826668497, %U A331942 8533343468,25814350227,78239112814,237541788793,722354115787,2199893807666,6708847354653,20485514756657 %N A331942 a(n) = number of primes of the form P(k) = k^2 + 1 <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A083844(n). %C A331942 Comparison of actual and approximated number of primes < 10^n: %C A331942 Limit %C A331942 10^n %C A331942 | A083844(n) %C A331942 | | a(n) %C A331942 | | | (a(n) - A083844(n))/A083844(n) %C A331942 10^1 2 1 -0.50000 %C A331942 10^2 4 4 0.0 %C A331942 10^3 10 9 -0.10000 %C A331942 10^4 19 20 0.052632 %C A331942 10^5 51 48 -0.058824 %C A331942 10^6 112 121 0.080357 %C A331942 10^7 316 317 0.0031646 %C A331942 10^8 841 855 0.016647 %C A331942 10^9 2378 2356 -0.0092515 %C A331942 10^10 6656 6609 -0.0070613 %C A331942 10^11 18822 18787 -0.0018595 %C A331942 10^12 54110 53970 -0.0025873 %C A331942 10^13 156081 156385 0.0019477 %C A331942 10^14 456362 456404 9.2032E-5 %C A331942 10^15 1339875 1340088 0.00015897 %C A331942 10^16 3954181 3955219 0.00026251 %C A331942 10^17 11726896 11726332 -4.8095E-5 %C A331942 10^18 34900213 34903256 8.7191E-5 %C A331942 10^19 104248948 104251560 2.5055E-5 %C A331942 10^20 312357934 312353236 -1.5040E-5 %C A331942 10^21 938457801 938461459 3.8979E-6 %C A331942 10^22 2826683630 2826668497 -5.3536E-6 %C A331942 10^23 8533327397 8533343468 1.8833E-6 %C A331942 10^24 25814570672 25814350227 -8.5396E-6 %C A331942 10^25 78239402726 78239112814 -3.7054E-6 %C A331942 10^26 237542444180 237541788793 -2.7590E-6 %C A331942 10^27 722354138859 722354115787 -3.1940E-8 %C A331942 10^28 2199894223892 2199893807666 -1.8920E-7 %H A331942 Keith Conrad, <a href="https://kconrad.math.uconn.edu/articles/hlconst.pdf">Hardy-Littlewood Constants</a>, (2003). %F A331942 b(m) = round (C * Integral_{x=2..m} 1/log(x) dx), with C ~= 0.6864067314..., the Hardy-Littlewood constant for k^2 + 1 (A331941); a(n) = b(10^(n/2)). %o A331942 (PARI) %o A331942 C=0.68640673140912300455609634836350943408916655062787977896811707366392; %o A331942 x=1.0;S10=sqrt(10);for(k=1,30,x*=s10;print1(round(C*intnum(y=2,x,1/log(y))),", ")) %Y A331942 Cf. A083844, A331941. %K A331942 nonn %O A331942 1,2 %A A331942 _Hugo Pfoertner_, Feb 02 2020