This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331946 #9 Feb 19 2020 22:03:24 %S A331946 1,5,11,17,29,41,89,101,461,521,761,941,1091,1361,1889,2141,3449,4289, %T A331946 5381,5561,10709,15461,23201,59309,70769,134741,174929,329969,493349 %N A331946 Factors k > 0 such that k*x^2 + 1 produces a new minimum of its Hardy-Littlewood constant. %C A331946 a(30) > 600000. %C A331946 See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly prime-avoiding. %C A331946 The following table provides the minimum record values of C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 + 1 for x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx. %C A331946 a(n) C np C from ratio %C A331946 1 1.37281 3954181 1.41606 %C A331946 5 0.66031 1816520 0.67979 %C A331946 11 0.56115 1512897 0.57810 %C A331946 17 0.52244 1392498 0.53816 %C A331946 .. ....... ...... ....... %C A331946 329969 0.20443 430342 0.20883 %C A331946 493349 0.20348 424719 0.20781 %D A331946 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209. %H A331946 Karim Belabas, Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020. %H A331946 Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>, preprint, 1998. [pdf copy, with permission] %Y A331946 Cf. A221712, A331940, A331945, A331947, A331948. %K A331946 nonn,more %O A331946 1,2 %A A331946 _Hugo Pfoertner_, Feb 10 2020