cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331948 Nonsquare factors k > 0 such that k*x^2 - 1 produces a new minimum of its Hardy-Littlewood constant.

This page as a plain text file.
%I A331948 #10 Feb 21 2020 11:00:02
%S A331948 2,3,7,13,19,31,79,151,211,331,499,631,751,991,1171,2011,2311,2671,
%T A331948 3019,3931,4159,4951,5119,6451,7459,10651,18379,32971,48799,61051,
%U A331948 78439,84319,162451,199411,230239,257371,404251,462331,529699,584791,640819
%N A331948 Nonsquare factors k > 0 such that k*x^2 - 1 produces a new minimum of its Hardy-Littlewood constant.
%C A331948 a(42) > 10^6.
%C A331948 See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly prime-avoiding.
%C A331948 The following table provides the minimum record values of C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 - 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
%C A331948     a(n)    C       np    C from ratio
%C A331948        2 3.70011 10448345 3.81422
%C A331948        3 2.07514  5794128 2.13869
%C A331948        7 0.88360  2411224 0.91046
%C A331948       13 0.87451  2344299 0.89971
%C A331948       .. .......  ....... .......
%C A331948   584791 0.21378   445220 0.21860
%C A331948   640819 0.21229   439946 0.21641
%D A331948 Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
%H A331948 Karim Belabas, Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020.
%H A331948 Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>, preprint, 1998. [pdf copy, with permission]
%Y A331948 Cf. A221712, A331940, A331945, A331946, A331947.
%K A331948 nonn
%O A331948 1,1
%A A331948 _Hugo Pfoertner_, Feb 10 2020