A331961 a(n) is the greatest square number k such that n AND k = k (where AND denotes the bitwise AND operator).
0, 1, 0, 1, 4, 4, 4, 4, 0, 9, 0, 9, 4, 9, 4, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 16, 25, 16, 25, 16, 25, 0, 1, 0, 1, 36, 36, 36, 36, 0, 9, 0, 9, 36, 36, 36, 36, 16, 49, 16, 49, 36, 49, 36, 49, 16, 49, 16, 49, 36, 49, 36, 49, 64, 64, 64, 64, 64, 64, 64
Offset: 0
Examples
The first terms, alongside the binary representations of n and of a(n), are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 1 1 1 2 0 10 0 3 1 11 1 4 4 100 100 5 4 101 100 6 4 110 100 7 4 111 100 8 0 1000 0 9 9 1001 1001 10 0 1010 0 11 9 1011 1001 12 4 1100 100 13 9 1101 1001 14 4 1110 100 15 9 1111 1001 16 16 10000 10000
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8192
Programs
-
PARI
a(n) = forstep (m=sqrtint(n), 0, -1, if (bitand(n, m^2)==m^2, return (m^2)))
-
Python
from math import isqrt def A331961(n): return next(m for m in (k**2 for k in range(isqrt(n),-1,-1)) if n&m==m) # Chai Wah Wu, Aug 22 2023
Formula
a(n) = 0 iff n belongs to A062880.
a(n^2) = n^2.