This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331963 #12 Feb 15 2020 11:04:39 %S A331963 1,2,6,26,39,78,202,303,334,501,606,794,1002,1191,1313,2171,2382,2462, %T A331963 2626,3693,3939,3998,4342,4486,5161,5997,6513,6729,7162,7386,7878, %U A331963 8914,10322,10743,11994,12178,13026,13371,13458,15483,15866,16003,16867,18267,19286 %N A331963 Matula-Goebel numbers of semi-lone-child-avoiding rooted identity trees. %C A331963 A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. It is an identity tree if the branches under any given vertex are all distinct. %C A331963 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %C A331963 Consists of one, two, and all nonprime squarefree numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n. %H A331963 Gus Wiseman, <a href="/A331963/a331963.png">The first 63 semi-lone-child-avoiding rooted identity trees.</a> %F A331963 Intersection of A276625 (identity trees) and A331935 (semi-lone-child-avoiding). %e A331963 The sequence of all semi-lone-child-avoiding rooted identity trees together with their Matula-Goebel numbers begins: %e A331963 1: o %e A331963 2: (o) %e A331963 6: (o(o)) %e A331963 26: (o(o(o))) %e A331963 39: ((o)(o(o))) %e A331963 78: (o(o)(o(o))) %e A331963 202: (o(o(o(o)))) %e A331963 303: ((o)(o(o(o)))) %e A331963 334: (o((o)(o(o)))) %e A331963 501: ((o)((o)(o(o)))) %e A331963 606: (o(o)(o(o(o)))) %e A331963 794: (o(o(o)(o(o)))) %t A331963 msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&And@@msiQ/@PrimePi/@First/@FactorInteger[n]; %t A331963 Select[Range[1000],msiQ] %Y A331963 A subset of A276625 (MG-numbers of identity trees). %Y A331963 Not requiring an identity tree gives A331935. %Y A331963 The locally disjoint version is A331937. %Y A331963 These trees are counted by A331964. %Y A331963 The semi-identity case is A331994. %Y A331963 Matula-Goebel numbers of identity trees are A276625. %Y A331963 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees are A331965. %Y A331963 Cf. A004111, A007097, A050381, A061775, A196050, A291636, A300660, A306202, A320269, A331681, A331873, A331875, A331933, A331934, A331936. %K A331963 nonn %O A331963 1,2 %A A331963 _Gus Wiseman_, Feb 03 2020